クリティカルシンキング入門

思考のクセを見直し視点を広げる旅

思考の癖を自覚? 物事を考える際、これまでの経験に基づいて判断し、行動に移していましたが、本講座を受講したことで自分自身の思考の癖を自覚することができました。決断をする前に「この考えは本当に正しいのか」「他に別の視点はないのか」「様々な可能性を考慮した上での結論なのか」と、一度立ち止まることの重要性を実感しました。 伝える工夫は何か? また、文章を書く際や資料を作成する際、さらには人に何かを伝える際にも、相手の立場に立って考えることの重要性を学びました。例えば、フォントなど、これまでは自分の好みで選んでいたものも、何を伝えたいかによって選択することで、相手に与える印象が大きく変わることを知りました。 イシューを捉える? 日々の業務においても、議論が脱線したり、当初の予定と異なる方向に話が進むことが多々あります。しかし、「イシュー」、すなわち「何が問題か」を意識することで、効率的に思考を整理し、会議をスムーズに進行させることができることを実感しました。この「イシュー=問題箇所」という点を忘れずに意識し続けたいです。 来期計画をどう? 当期の最後の月となり、来期の組織体制が確定しました。より具体的な戦略を策定できる状況となったため、来期の行動計画や戦略策定に当講座の学びを活用していくつもりです。例えば、「来期成長するためには何をすべきか」「今期結果が伴わなかったKPIはなぜそうなったのか。来期結果を残すにはどうすべきか」「従業員満足度を上げるにはどうすべきか」など、いくつかの問いを自分の中で立て、考えを深めていきたいと思います。そして、年明けの方針発表時には一つの指針を示せるよう努めていきます。 学び共有は有効? 過去のナノ単科受講時も感じましたが、アウトプットを頻繁に行うことで知識が身についていきます。当講座の学びを会社の同僚や部下に共有することで、自分が正しく理解できているか、人にきちんと説明できるかを日々の業務で確認していきます。今週で当講座は終了するため、復習のために学び放題を活用し、クリティカルシンキング関連の動画を視聴し、アウトプット以外からも知識の定着を図っていきます。

データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。

マーケティング入門

ターゲット発見で広がるビジネスの可能性

ターゲットは誰? 『誰に売るか』をテーマにした講義を受け、ターゲットに合わせた店づくりや商品開発の重要性を学びました。既存の商品でも、正しいターゲットを見つけることで新たな顧客を獲得する可能性が広がります。その際、以下の三つが重要です。①強みを組み合わせて差別化できる領域を探すこと。②利用場面を具体的にイメージし、顧客にとっての価値を見つけること。③ターゲットと提供価値を繋げるプロモーション施策を展開することです。 理論はどう実践? 講義の中で、ポジショニングの成功例として「レッツノート」や「本炭窯」が取り上げられましたが、理論を実践に移すのは簡単ではありません。狙った市場の顧客が本当にその提供価値を認めるか、具体的にどんな用途で使いどんな価値を求めるのか、ここの理解が非常に重要で、前回学んだ真のニーズと絡めて考える必要性を感じました。具体的な行動としては、身近な商品や自社の商品、サービスについて新しい用途や使用場面を想像してみることが提案されました。日々の生活の中で、例えばコンビニに立ち寄った際などに、この訓練を行うと良いです。 市場選びはどう? またセグメンテーションとターゲティングでは、有限の経営資源を有効に活用するために自社の特性に合った市場を選ぶことが重要です。市場の魅力と勝ち残る可能性を慎重に評価することが求められ、ファッション業界には新規性を重視し、ビジネスでは保守性を重視するなど、時と場合によって変わる顧客の志向にも留意する必要があると学びました。 商品の位置づけは? ポジショニングマップの活用も重要で、これは自社商品の市場での位置づけを視覚的に把握するためのツールです。競合との違いや顧客の認識を理解しやすく、機能だけでなくブランドイメージや顧客体験を考慮することが次のステップと感じました。 競合との差は? 最後に、競合分析を通じて、自社の差別化ポイントを明確にすることが、提案資料やプロモーションにおいて顧客の共感を得る鍵となります。競合の強みや弱みを分析し、自社ならではのユニークな価値を見つけ、それを効果的に伝えることが重要です。

デザイン思考入門

戻る勇気で生み出す革新の軌跡

テストで何を見極める? デザイン思考の最終ステップである「テスト」は、共感、課題定義、発想、試作というこれまでの流れを総仕上げしながら、各プロセスに戻るための道筋を示す重要な工程です。この段階では、試作に盛り込んだアイデアの充実度、課題定義の妥当性、そして初期の共感がどこまで実現されているかを議論します。状況に応じて、必要な工程に立ち返ることができるため、非線形的なアプローチの入り口とも言えます。 なぜ戻るが大切? 一般には「戻る」という作業は嫌われがちですが、デザイン思考を活用して何かを実現するためには、このプロセスが非常に大切だと感じています。初めからプロジェクトメンバー全員がその重要性を共有していれば、スムーズに進められるのではないかと思います。 システム開発の難しさは? 私の仕事であるシステム開発では、各ステップが線形に進む必要があるという制約があり、各工程ごとに承認や同意が求められます。一見するとデザイン思考とかけ離れているようにも思えますが、今回の学びを通じて、デザイン思考は全体を俯瞰するだけでなく、一部分の課題に対するアプローチとしても有効であると実感しました。特に要件定義の期間にデザイン思考を集中的に取り入れることで、その後の設計やシステムテストの工程に悪影響を及ぼすことなく、より効果的な成果に結びつけることができると考えます。 新規案件でどう活かす? 現在手掛けている新規案件では、顧客側からの提案依頼がまだ明確ではないため、この段階でデザイン思考を活用できる可能性を感じています。顧客を巻き込み、共感のポイントを洗い出し、適切な課題定義に結びつけることができれば、その後に弊社側で発案する解決策との連携も取りやすくなり、システム完成後の効果がより実感できるはずです。一方で、試作段階については、単なる操作画面のスライドショーでは伝わりにくいという過去の経験もあり、工夫が求められると感じています。また、システム開発においては試作にかかるコストも課題となるため、これまでの経験を活かしながら、デザイン思考をうまく取り入れてより良い課題解決へ繋げていきたいと思います。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

クリティカルシンキング入門

データ解析で見える新たな地平線

解像度の高い情報化方法は? 単なる数値データを解像度高く意味のある情報にするための方法について考えました。まず、データの加工では、比率を見たり加算したりとひと手間加えることで、情報を活用できる状態にします。また、グラフ化することで、数字では見えづらかった傾向を視覚化し、理解を深めることができます。 データ分解のポイントは? データの分け方については、グラフ化した後にどの粒度で分けるかが重要です。機械的に分けるのではなく、仮説を持って複数のパターンを試行錯誤することで、有意義なデータを導き出すことができると考えています。分解のポイントとしては、事柄を「いつ、誰が、どのように」といった複数の視点から見ることが重要です。分解した結果、傾向が見えない場合でも、その視点では傾向が見られないという意義のある結果になります。さまざまな切り口で分解し、一度立ち止まって本当に正しいのかを考えることも大切です。 MECEに基づく問題解決とは? 問題解決のステップを踏む上では、MECE(モレなく、ダブりなく)を意識します。MECEの切り口には、全体を定義して部分に分ける層別分解、事象を変数で分ける変数分解、ある事象に至るプロセスで分けるプロセス分解などがあります。これにより、モレなく網羅的な分析が可能になります。 フィードバックの重要性 最後に、物事をMECEを軸に分解して考える際、考え方の偏りによってモレなくという部分が満たせなくなることがあるため、自身の考えの癖を常に意識し、他者からのフィードバックを受けて手法の精度を高める必要があります。また、分析結果が仮定と近い場合でも、すぐに結論付けず、一歩踏み止まって再考する習慣を大切にしたいと考えます。 システム運用の問題予防はどうする? システム運用における問題予防の観点では、膨大な数値データの中から意味を見つけ出し、データを扱う方法を変えていくことが重要です。H/W、M/W、NWの性能レポートや監視ツールのデータから、予防保守という視点で今後起こり得る問題の傾向を掴むようにデータを活用していきたいと思います。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

クリティカルシンキング入門

問いかけで広がる学びの世界

どんな問いから始めた? 私自身、いきなり打ち手に飛び付いてしまう傾向があると反省し、まずは疑問形の問いを立てることから始めることにしています。考えている途中で「どんな問いだったか」を忘れたり、話が逸れてしまうことが多いため、問いは必ず記録するようにしています。同じ課題に取り組んでいる人がいる可能性も考慮し、問いを共有することでお互いの思考を深めたいと思っています。また、状況に応じてイシューが変わることを意識し、イシューを見直すタイミングに関しては基準を検討していきたいと考えていますが、具体的なイメージは実務の中で模索する段階です。 成果重視の目標設定は? 私の勤務先では、四半期ごとに目標設定を行っており、自身が抱える問題とその解決策の案をまとめた上で上司とすり合わせをしています。この際、「本当に四半期内に成果が出せる内容か」や「組織にインパクトがある内容か」を問いながら見直すことで、より現実的かつ効果的な目標設定が可能になると感じています。 論点はどう深掘り? また、担当領域の事業進捗については月次で実績や見込み、そして伝えたい論点を発表する機会があります。伝えたい内容を深く掘り下げるためにも、問いを立てて考察する手法が役立っていると実感しています。 根本原因を探る? さらに、同僚から相談や質問を受けたとき、従来は単に聞かれたことに答えるだけでしたが、問題の根本原因を捉えようという姿勢を持つことで、より本質的な解決へと繋がると気付きました。これらの経験から、日々の小さな気づきを記録し、業務の際に問いとして形にすることで思考を整理し、深めるように努めています。 手書きは効果的? 手書きで問いを立てることで頭の中を整理しやすいと感じるため、パソコンでの入力よりも手書きを好んで活用しています。また、問いを整理した後は、気軽に壁打ちができるように上司とのオンラインミーティングの時間を事前に設定することにしています。上司と私のオフィスが異なるため、コミュニケーションのタイミングを逃さないよう、スケジュール調整は早めに行うよう心掛けています。

データ・アナリティクス入門

視点を変える学びの切り口

データ収集の視点は? これまで、自身の仮説を実証するためにデータ収集に終始していたことを痛感しました。仮説以外の視点でどのようにデータを集めるべきかが分かっていなかったため、今回「仮説を考えるためのフレームワーク」を学び、今後のデータ分析に活用できると感じました。また、ある仮説に対して別の仮説が成立する可能性への反論を防ぐため、複数の仮説を異なる切り口で立てることの重要性を再認識しました。たとえば、■3C(Customer=市場・顧客、Competitor=競合、Company=自社)や、■4P(Product=製品、Price=価格、Place=場所、Promotion=プロモーション)を利用する考え方は、データ収集の際に既存データのみならず、新たなアンケートやインタビューを通じた情報獲得にも役立ち、説得力のあるデータを生み出すための行動力が養われたと感じています。 社内参加の課題は? また、社内で実施している任意参加のセミナーや施策について、毎回参加する社員と全く参加しない社員の二極化が進んでいる現状を踏まえ、より多くの社員の参加を促すために、3Cや4Pの視点で検討を行いたいと考えています。具体的には、■3Cでは、Customer(市場・顧客)として社員、Competitor(競合)として同時開催予定のイベントの有無、Company(自社)として社員のニーズが満たされているかを検討し、■4Pでは、Product(コンテンツが社員のニーズを満たすか)、Price(参加に見合う価値があるか)、Place(開催方法が参加しやすいか)、Promotion(社内への情報周知が十分か)といった観点で施策の企画を進めます。 意見共有はどう? まずは、今回の学びを一緒に企画・運営するメンバーと共有した上でディスカッションの場を設け、これまでの検証に不足していた視点やデータを補完します。特に、本社以外の全国の拠点の社員にとっては日々のコミュニケーションが行き届いていないため、インタビューなどを通じて意見を聴く機会を設け、次年度に向けた施策の改善に努めたいと思います。

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right