データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

クリティカルシンキング入門

視点転換で広がる学びの可能性

自分の考えに疑問は? 個人の自由な発想は偏りが生じやすいため、自分の考えを批判的に見直すことが大切です。視点を意識的に変え、分析を分解し、MECEの考え方を取り入れることで、客観的に思考する訓練ができます。 なぜ対立が起きる? たとえば、打合せや会議の場では、目標が同じでも各々の意見に違いが出やすく、その結果対立が生じることがあります。こうした状況では、異なる視点から物事を考え、しっかりと分析するスキルがあれば、適切な方針や解決策の提案が可能になります。 説明はどう伝わる? また、資料作成やプレゼンテーションの場面でも、クリティカルシンキングを活用することで、客観的かつ正確な説明ができ、聴衆の理解と納得を促すことができます。これにより、議論が一層深まり、より質の高い意見交換が期待されます。 決定に注意する理由は? さらに、意思決定においても客観性を維持することで、後々のトラブルや余計な説明を避けることができます。まずは自分の意見に疑問を持ち、「なぜ?」と問いかけながら、漏れなく整理されたクリアな資料作成を心がけることが、客観的な思考方法の定着につながります。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

戦略思考入門

数字で納得!業務改革の新提案

従来方法を見直すには? 長年同じ業務に従事していると、ついつい従来のやり方に固執しがちです。しかし、限られた時間内で多くの成果を上げるためには、効率の悪い業務に割く時間を削減する必要があります。なお、やるべきことと不要なことの判断は一個人だけで決められるものではなく、客観的なデータを基に周囲に説得力をもって説明することが不可欠です。 指標はどう活かす? 例えば、ウェブサイトの運営では指標が明確なため、ページビューが少ないコンテンツに充てる時間や外注費を抑え、逆に成果の高いコンテンツには多くの時間と予算を割り当てる工夫が可能です。こうして限られたリソースを効率的に活用することで、より良い成果が見込めます。 定量化の壁を超えるには? 一方で、総務業務のように業務量が定量化されていない場合、周囲を納得させるためのデータ整理にはかなりの時間を要します。そのため、私自身はウェブサイト関連の業務については効率化を進める一方、総務業務に関しては現状維持を選択せざるを得ない状況です。 このように、合意形成に多大な時間とコストがかかるタスクをどのように効率化するかは、今後の大きな課題となります。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

自分の思考をどう? クリティカルシンキングを学ぶとは、自分の思考をチェックする「もう一人の自分」を育てることです。直感や経験則に頼った偏った思考ではなく、客観的に物事を捉えるために、頭の使い方そのものを学ぶ必要があります。 問いを立てるには? この手法は、「問い」を立て、その問いに対して自分の主張と根拠を整理しながら答えを導くプロセスです。特にお客様からの要望に対しては、課題の本質を正確に捉えるためにクリティカルシンキングが欠かせません。適切な問いを設定し、明確な主張と理由を持ってアプローチすることで、より最適な提案が可能となります。 チームでどう共有? また、チームでこのアプローチを共有し、共通の「問い」を持つことにより、全体の方向性が一致し、効率的なチームビルディングが実現できます。一人一人が直感的に安易な答えを出すのではなく、まずは問いを立て、ピラミッドストラクチャーを活用して論理的に組み立てることが重要です。 本当に正しいの? さらに、その立てた問いが本当に正しいのかを常に自問自答する癖をつけ、必ずアウトプットとして形にし、チーム内で共有することが求められます。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

クリティカルシンキング入門

論理的思考で社内外プレゼンが劇的向上

提案資料作成の手法は? 社内外に対して提案資料を作成する際、今回学んだ手法が非常に活用できると感じました。特に口頭で伝える場合、思いついたことをそのまま伝えがちですが、伝える前に手順を踏んで整理することを心がけるべきです。 整理の重要性は何? まず、思いついたまま伝えると相手は混乱する可能性が高いです。そのため、一旦考えを整理し、主語と述語のつながりに注意して、具体化して伝えることが重要です。具体的な根拠を複数用意し、論理的な手法として「ピラミッドストラクチャ」を用いることで、より分かりやすく主旨を伝えることができます。「これぐらいでわかるだろう」という態度は避けましょう。 ピラミッドストラクチャーの活用法 課題解決策の提示においても、ピラミッドストラクチャーを用いて論理的に整理することが重要です。ブレインストーミングの会議では、メンバーから出された項目を分類し、整理して記録に残す習慣をつけることがポイントです。 念入りな準備がもたらす効果 このように、今回学んだ手法を活用して、提案時に念入りな準備を心がけることが、効果的で理解しやすい伝達に繋がると実感しました。

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right