アカウンティング入門

在庫管理で紐解く経営の未来

貸借対照表の意義は? 貸借対照表は、各勘定科目の使い方や集め方を把握するためのツールとして活用できます。互いにバランスがとれていることから、バランスシートとも呼ばれ、会計基準の違いによって勘定科目が異なる場合がある点も留意すべきです。 負債割合は適正? 負債と純資産の割合は、経営状況を判断するうえで非常に重要な要素です。たとえば、営業利益が現時点で少ない場合でも、将来への期待が大きいケースでは、負債が多くなる可能性があると考えられます。 在庫管理の難しさは? 在庫は資産として計上されるため、過剰な在庫保有により回転率が低下すると、売上の伸びが鈍化し、バランスシート全体に悪影響を及ぼす恐れがあります。販売との密接な関係から、適切な需要予測を行った上で在庫を管理することが求められます。 利益と在庫の調整は? 現在担当している事業では、利益率が低下している中で在庫が資産額を押し上げるものの、売上の伸びが期待通りに進まず、利益が出にくい状況です。そのため、利益を意識した在庫コントロールが急務であり、今後の在庫会議などでこのバランスについて具体的な意見を述べられるよう準備していく必要があります。

データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

データ・アナリティクス入門

仮説を飛び出せ!実践が拓く未来

学びの流れは? 実践演習を通して、What→Where→Why→Howの流れを学べた点が非常に印象的でした。実際の感想文を読むと、学んだ内容が具体的にどのように役立つかが実感でき、理解が深まったと感じました。 仮説と現実のギャップは? また、仮説の正しさに固執せず、世の中の結果を生み出す要因が複数絡んでいるという現実に納得しました。仮説を立てた段階で行動に移すことの重要性を強く感じ、その姿勢が実務でも大切だと理解できました。 複雑な要因は何故? さらに、複雑な要素が絡み合う中でWhyが必ずしも一つではないという点にも気付かされました。MECEに分類しながら仮説を立て、個々の要因を一つずつ検証していくプロセスは、仕事に応用するには手間がかかると感じました。しかし、説得力を持たせるためには、従来の仮説以外の理由を排除する作業が重要であることも学びました。 実務にどう生かす? この経験からは、仮説以外の可能性をいかに排除していくかという点が、MECE思考の力に直結していると感じました。本から得たフレームワークを活用し、実際の業務で実践することで、さらに思考力を高めていけると確信しています。

データ・アナリティクス入門

仮説の力で未来を切り拓く

仮説の役割は? 仮説とは、ある論点に対する仮の答えであり、目的に応じて「結論の仮説」と「問題解決の仮説」に分類されます。これらは、過去、現在、未来という時間軸によってその内容が変化するため、状況に応じた検討が求められます。仮説を持つことで、個々の仕事における検証能力が高まり、説得力が増すとともにビジネスのスピードや行動の精度も向上します。 会員減少の理由は? たとえば、コミュニティの会員数が減少傾向にある現象について検討する際、フレームワークに沿った分析を行うことで、何が問題なのか、どこに課題があるのか、なぜその問題が生じているのか、さらにはどのように対応すべきかといった具体的な課題が明確になり、改善策も見えてくる可能性があります。このような一連のプロセスは、非常に難しい課題ですが、正確な状況把握と議論の進展に寄与します。 活用法はどう変わる? これまで、仮説を立て検証する際に、フレームワークを十分に活用せず、目の前の事象に対して漠然と対処していた部分がありました。今後は、4Pや3Cなどのフレームワークを効果的に用い、より具体的な仮説を立て検証することが求められると感じています。

クリティカルシンキング入門

イシュー特定で成果を最大化!

イシューの意義は? クリティカルシンキングを通じて最も得られた学びは、「イシューを明確にすることの重要性」です。解決策を決定する際にイシューが不明確なままだと、結果的に意味のある成果が得られない可能性が高いと感じました。答えにたどり着くためには、ピラミッドストラクチャーやデータ分析といったスキルを駆使することが効果的であることを学びました。 スキルはどう活かす? これらのスキルは、例えば講演会の企画や医師に対するプロモーション活動計画の作成、チームでの会議、社内メールの作成、上司への活動報告など、さまざまな場面で活用できます。重要なのは、まずイシューを特定してから活動内容を決定することであり、この点を自分自身だけでなく周囲にも意識させていきたいと思っています。 データの切り口は? 業務において、まずは関連データの分析に取り組むことが必要です。データをただ見るのではなく、異なる切り口で分解し、数字から見える問題を明確にします。その上でイシューを特定し、活動内容を決めることが肝心です。さらに、なぜそのような内容になったのか、その背景についても説明を欠かさないように心がけたいと思います。

データ・アナリティクス入門

見落としがちな分析のコツ

目的は明確ですか? 目的を早く達成したいという思いから、必要な分析がおろそかになってしまうことがあることを実感しました。その主な原因は、目的そのものの解像度や比較方法の適切さに欠けている点にあると再認識しています。 appletoappleの壁は? 特に、いわゆる「apple to apple」の分析が重要である一方、その実施の難しさを強く感じました。短期間で結果を求める傾向は、判断に必要な深堀りを妨げる要因となっているといえます。 投資判断を見直すべき? また、ファンドの投資判断、景気動向の予測、予算の設定、投資先のモニタリングから得たインサイト、そしてポートフォリオのパフォーマンス検証において、これらの分析手法を活用する意向です。過去の実践において、目的の解像度や視点が十分ではなかった可能性があるため、改めて見直す必要を感じています。 バイアスなく比較するには? このような状況から、どのような方法やツール、そして比較対象を選定すれば、バイアスなく「apple to apple」の比較ができるのか、具体的な事例に基づかない形で皆さんの意見をぜひお聞かせください。

アカウンティング入門

資産と負債が教えてくれた経営のヒント

資産と負債はどう考える? B/Sにおける資産(お金の使い方)と負債(お金の集め方)の基本的な考え方が理解できました。資産・負債という言葉は、少しとっつきにくく、理解が難しい印象を受けがちでしたが、「お金を何にどう使うか?」や「お金をどう調達するか?」という風に読み替えると、会社だけでなく個人の日常にも通じる考え方であることがわかり、以前より親しみやすく感じられました。資産は収益確保の源泉となるものとも捉えられるため、この点については今後、自分なりに考察を深めてみたいと思います。また、資産の大きさが経営にどのような影響やパラメーターとなるのかも検討してみる価値があると感じました。 B/S分析の活用は? 現状の業務において、B/S分析をどのように活用できるかという具体的なイメージはつかみにくかったものの、まずは自社のB/Sを確認し、財務状況を把握することから始めたいと考えています。経営者の視点に立つと、負債に対して自社の返済能力(稼ぐ力や本業以外での収益)を踏まえ、資産の売却やさらなる借入による追加投資が可能かどうかを判断する一つの指標となると感じるため、今後の学びに生かしていきたいと思います。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

クリティカルシンキング入門

視点転換で広がる学びの可能性

自分の考えに疑問は? 個人の自由な発想は偏りが生じやすいため、自分の考えを批判的に見直すことが大切です。視点を意識的に変え、分析を分解し、MECEの考え方を取り入れることで、客観的に思考する訓練ができます。 なぜ対立が起きる? たとえば、打合せや会議の場では、目標が同じでも各々の意見に違いが出やすく、その結果対立が生じることがあります。こうした状況では、異なる視点から物事を考え、しっかりと分析するスキルがあれば、適切な方針や解決策の提案が可能になります。 説明はどう伝わる? また、資料作成やプレゼンテーションの場面でも、クリティカルシンキングを活用することで、客観的かつ正確な説明ができ、聴衆の理解と納得を促すことができます。これにより、議論が一層深まり、より質の高い意見交換が期待されます。 決定に注意する理由は? さらに、意思決定においても客観性を維持することで、後々のトラブルや余計な説明を避けることができます。まずは自分の意見に疑問を持ち、「なぜ?」と問いかけながら、漏れなく整理されたクリアな資料作成を心がけることが、客観的な思考方法の定着につながります。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

戦略思考入門

数字で納得!業務改革の新提案

従来方法を見直すには? 長年同じ業務に従事していると、ついつい従来のやり方に固執しがちです。しかし、限られた時間内で多くの成果を上げるためには、効率の悪い業務に割く時間を削減する必要があります。なお、やるべきことと不要なことの判断は一個人だけで決められるものではなく、客観的なデータを基に周囲に説得力をもって説明することが不可欠です。 指標はどう活かす? 例えば、ウェブサイトの運営では指標が明確なため、ページビューが少ないコンテンツに充てる時間や外注費を抑え、逆に成果の高いコンテンツには多くの時間と予算を割り当てる工夫が可能です。こうして限られたリソースを効率的に活用することで、より良い成果が見込めます。 定量化の壁を超えるには? 一方で、総務業務のように業務量が定量化されていない場合、周囲を納得させるためのデータ整理にはかなりの時間を要します。そのため、私自身はウェブサイト関連の業務については効率化を進める一方、総務業務に関しては現状維持を選択せざるを得ない状況です。 このように、合意形成に多大な時間とコストがかかるタスクをどのように効率化するかは、今後の大きな課題となります。
AIコーチング導線バナー

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right