データ・アナリティクス入門

仮説から見える実践の道

目的は何でしょうか? まず、分析に着手する前に、目的意識を強く持つことが重要だと感じています。どのようなデータを用い、どのような加工を施して活用するのかを熟考することで、分析の精度が高まると思います。 仮説設定の秘訣は? 次に、仮説を立てることが分析の出発点であり、実際の数値や製造指標を軸にポイントを絞り込むことが有効です。数字を単に羅列するだけではなく、各項目の重要度や意味を十分に考慮したうえで比較分析を行うことが大切です。 分析結果はどう活かす? また、これらの分析は、次の四半期の実績検討に向けた具体的な資料となり得るため、単なるデータの把握に留まらず、実践的なアウトカムにつなげていく必要があります。日常業務においても、データの活用状況を見直し、改善のヒントとする取り組みが求められていると実感しています。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

クリティカルシンキング入門

見える!MECEで課題解決のヒント

MECEとはどう考える? 今週の学びは、MECEの考え方と切り口の作り方についてでした。MECEとは、全体を定義し、もれなく重複なく切り分けることで、目的に沿った視点で事象を分解し、問題の所在を把握する手法です。 どんな切り口を使う? 具体的には、層別分解、変数分解、プロセス分解という3つの切り口が挙げられます。業務改善の課題分析に活用する際、これらの方法を組み合わせることで、従来のプロセス分解のみでは見落としがちなポイントを捉えることが可能になります。 問題解決の糸口は? 従来はプロセス分解で分析を行っていたため、問題点が多い場合にどこから手をつけるべきか迷うことがありました。しかし、まず解決すべき問いを明確にした上で、層別分解や変数分解を取り入れることで、目標に沿った形で課題を整理できると感じました。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

リーダーシップ・キャリアビジョン入門

伝え方工夫が未来を創る

毎日の努力の意味は? 一足飛びの変化は望めず、日々の地道な努力が結果につながると改めて実感しました。これまでに業績評価の面談を何度も経験してきましたが、相手や内容が異なるたびに伝え方も変える必要があり、その都度試行錯誤してきたと感じます。特に厳しい内容を伝えるときは、常に「相手の成長」を念頭に置き、目的を見失わないよう注意しています。 どうして寄り添う? 業績評価面談だけでなく、1on1や気軽な相談にもこの考え方は活用できると感じました。どうしても結論を急ぎがちになりますが、まずは相手の気持ちに寄り添い、成長を支援するために最適な方法を考えながら対応することが大切だと実感しています。 キャリアをどう見る? 今後は、皆さんがどのようにご自身のキャリアを描いているのか、ぜひお伺いしてみたいと思います。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

データ・アナリティクス入門

比較で見える回収改善のカラクリ

分析の基本は? 債権回収の分析にあたっては、「分析は比較である」「apple to apple」「生存者バイアスに気をつける」の三つのキーワードを常に意識しています。まずは、分析の目的を明確にし、全体像をビッグデータで可視化するところから始めます。 現状評価はどう? 具体的には、保有している債権全体と請求可能債権の集計を行い、過去からの変遷を比較することで現状の回収状態を評価します。その上で、改善が求められる債権セグメントを明らかにしていく方針です。 集計イメージは? まずは集計のイメージを作成します。保有債権を請求可能なものとそうでないものに分類し、細分化した内容を表にまとめます。イメージが固まったらビッグデータを活用して集計を実施し、過去からの遷移表を作成して比較しやすい状態に整えます。

データ・アナリティクス入門

整理の魔法!ロジックツリー術

全体像はどう把握? ロジックツリーを用いることで、全体を俯瞰して物事を捉え、抜け漏れなく整理する手法を学びました。同時に、細かく分割する過程で目的そのものに偏らず、重要な要素を見逃さないバランス感覚の大切さも実感しました。 学びをどう応用する? これらの学びは、データ移行のプランニング時のプロセス分割や、データ分析において対象項目の洗い出しと重要度付け、プロジェクト体制の整理、また予算計画時の項目洗い出しなど、業務のさまざまな場面で応用できると考えています。 具体策はどう実行? 具体的な行動としては、まずスコープを決定する際にチェックツールを活用して抜け漏れがないかを確認し、プロセス整理の際にはロジックツリーを使って複雑な要素を分かりやすく簡素化する取り組みを行っていきたいと思います。

クリティカルシンキング入門

一工夫で伝わる言葉の魔法

メール文章は短くする? 日々、外部や営業店へ連携するメール文章がどうしても長くなってしまうため、忙しい相手が負担なく読める文章を心がけたいと考えています。合議書については、目的が明確な資料として、グラフや図を活用し、理解しやすく作成することを目指します。また、仲間や上司に添削を依頼し、自分の欠点を改善していく方針です。 メールの表題はどう? 【メール文章について】 表題には一工夫を凝らし、最も伝えたい内容を端的に表現します。本文に関しても、改行や文字配置に注意し、できるだけ簡潔に要点を伝えるよう努めます。 周知文書の作り方は? 【周知文書について】 誰が読んでも理解しやすいよう、文章だけではなく図やグラフも用いて情報を整理し、視覚的な効果からも訴求できる資料作成を進めます。

データ・アナリティクス入門

仮説で拓く多角的学びの扉

仮説の留意点って何? 仮説立ての留意点として、まずは複数の仮説を立てることが重要だと感じました。一つの仮説だけで検証を進めると、偏りが生じる恐れがあるため、要素を網羅する視点から複数の仮説を考える必要があります。ただし、全てに多くの時間を割くわけにはいかないため、効率的かつ筋の通った仮説をたてるための思考訓練が求められると実感しました。 フレーム活用の意義は? また、フレームワークの活用については、単に使うことを目的にするのではなく、思考の偏りや抜け漏れを減らす手段として活用できると感じています。何が原因かを探る際に、一つの仮説に固執して検証と修正を繰り返す方法は非効率であるため、あらかじめ複数の視点から網羅的に仮説を立てた上で検証していく姿勢が必要だと考えています。

リーダーシップ・キャリアビジョン入門

若手育成でプロジェクト成功への道

仕事を任せる重要な理由は? 仕事を任せる際は、まずその背景や目的を伝えた上で一度任せてみることが重要です。そして、適切なタイミングで進捗を確認し、必要に応じて軌道修正を行いながら最終形を目指します。振り返りも定期的に行い、良かった点や課題となった点を整理することが大切です。 若手へのアプローチは? モチベーションの上がり方は個人によって異なるため、それぞれに合ったアプローチを心がける必要があります。特に新入社員や若手メンバーに対しては、この方法が効果的に活用できそうです。DX推進部に異動したことで若手メンバーとの関わりが増え、自分がまとめ役になることが多い中で、これらの方法を実践することでメンバーの成長とプロジェクトの成功に貢献できると感じています。
AIコーチング導線バナー

「活用 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right