データ・アナリティクス入門

目的達成!データの活かし方

データの活用法は? データを見ると、低い指標や原因そのものは一目で把握できるものの、その背景や改善策を考えるのが難しいと実感しました。データ分析自体は非常に重要ですが、それはあくまで目的達成のための手段であると感じています。今後は、どのように目的達成に向けて効果的に活用すべきかを学び、スキルを磨いていきたいと思います。 離職率改善と顧客獲得は? 離職率の低下を目指す際には、原因の調査とその対策、また迅速な対応策の立案に今回の学びが大いに役立つと感じています。また、新規顧客の獲得においても、既存顧客が魅力に感じるポイントや、プレゼンテーション時の評価に注目し、その分析から得られた知見をリード獲得の改善に活かすことができると考えています。

クリティカルシンキング入門

具体力で伝える文章の秘訣

読み手理解の近道は? ビジネス文書は、読み手が内容を理解するまでの時間をいかに短縮できるかを意識して作成する必要があると実感しました。そのため、視覚化や文章配置などの工夫を惜しまないことが非常に大切だと感じています。 学びはどう役立つ? 今回学んだ観点は、今後の業務に実践的に活かしていきたいと思います。 伝え方はどう変える? 管理部門に所属する私にとって、社員全体に同じ行動を促すことは日常的な業務です。誰が見ても同じ内容で理解できるようにするため、具体的な期限や目的、理由などを明確に伝えることが不可欠です。また、アイキャッチなどを効果的に活用し、リードで概要が把握できるような文章構成に努めたいと考えています。

クリティカルシンキング入門

イシューの真髄で課題突破

イシューの定義は何? イシューを明確に定義することの重要性を実感しました。具体的なイシューを立て、その要素を分解することで、本質的な解決につながると理解できました。もしイシューが抽象的だったり、異なっていると、周囲との認識にずれが生じ、目的を見失う恐れがあるため、常に意識する必要があると感じました。 ピラミッドの魅力は? また、ピラミッドストラクチャーは、ビジネスプランの策定、課題解決、レポート作成、プレゼンテーションなど、さまざまな場面で有用だと学びました。チームで議論を行う際にも、全員が具体的なイシューの定義を共有することで、効率的に本質的な議論を進めることができ、時間を有効に活用できると考えます。

データ・アナリティクス入門

客数だけじゃ見えない真実

客単価のばらつきは? グループークでの演習を通じ、学びを改めて振り返ることができました。特に、客単価が昨年と変わらないと判断したとき、すぐに客単価を無視して客数に注目しようと考えたものの、客単価のばらつきを確認する視点が欠けていたことに改めて気づかされました。 データ活用はどう伝える? 実践を怠ると知識がすぐに薄れてしまうため、日々の貴重なデータを目的に合わせてどう活用するか、また、相手にどういったグラフで伝えるかを考えながら実行し続けたいと思います。さらに、分析結果をそのまま終わらせず、振り返りや他者からのフィードバックを受けて、常にブラッシュアップに努めるつもりです。

データ・アナリティクス入門

仮説が紡ぐ学びの物語

フレームワーク利用は効果的? フレームワークを活用することで、単純な情報だけでは十分に特定できない要素が増えてくる中、考えを整理するための有益な補助となると実感しました。無闇に考えを巡らせるのではなく、分析の目的を明確にすることが何より大切だと改めて感じました。 仮説検証の秘訣は? また、分析におけるストーリー作りが、仮説の検証に非常に役立つことも理解できました。仕事においても、成果という仮説を検証するプロセスと重なる部分があり、同じ仕組みが働いているように思えました。一方で、仮説の幅を広げるためには、明確な目標設定が不可欠であるという点も改めて認識しました。

データ・アナリティクス入門

実情を活かす多角的分析のすすめ

目的や進め方は整っていますか? 分析に取り組む際は、まず目的や進め方を明確にし、関係者と認識を合わせることが重要だと学びました。また、1人で行う場合でも、フレームワークを活用して多角的な視点から分析し、偏りのない結果を目指すことが大切だと感じています。 今後の計画は具体的? 今後は、目的と求めるアウトプットをしっかりと定めた上で、データだけでなく現場の実情も踏まえた多角的な分析を実施していきたいです。各部門の意見を取り入れながら、What・Where・Why・Howの各ステップを丁寧に行き来することで、根拠ある改善提案へとつなげていくことを目指します。

戦略思考入門

戦略で未来への一歩

戦略的思考とは? 戦略的思考の重要性に気づくことができました。普段の身近な事柄にも戦略的な視点で考えることで、短期的な目標から中長期的なビジョンに至るまで、常に目的を意識した行動が求められると実感しました。同時に、より高い視点で物事を捉える必要性も改めて感じる結果となりました。 新部署でどう進む? 現在、新しく配属された部署では、まだ作業的な業務が中心ですが、今後はフレームワークの活用や事業計画、予算策定といった活動にも視野を広げ、より高い視座で取り組む意向です。分析を深めるとともに、多角的な視野を持って業務にあたることを目指しています。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

データ・アナリティクス入門

多角視点で捉えるデータの魅力

データ理解の原点は? 今週は、データの理解を出発点とする学習に取り組みました。データとは、ひとつの側面だけでなく多角的に捉えるべきものであり、個人的な偏りを排して客観的に扱う難しさがあると感じました。 判断の落とし穴は? また、データそのものの意味を正確に把握することと同様に、データを活用する目的を明確にすることも非常に重要だと思いました。迅速かつ効率的な業務が求められる場面では、あまりにも素早く判断しようとすると、過去の経験や似た事例に頼りがちになり、その結果、重要な要素を見落としてしまうリスクがあると実感しました。

データ・アナリティクス入門

目的と仮説で描く成功戦略

目的はどう設定? これまでの学習を振り返り、分析作業に入る前に目的と仮説を立てるプロセスがいかに重要かを再認識しました。また、問題解決に向けて「What、Where、Why、How」の4ステップに沿って進める手法が印象的でした。 業務にどう生かす? 普段の業務においても、まずは問題解決のストーリーをしっかりと組み立て、その上で分析を進めることを意識して取り組みたいと考えています。今後は、各種フレームワークを活用しながら論理的な思考力の向上に努め、より迅速に多くの施策のPDCAサイクルを回していくことを目指します。

データ・アナリティクス入門

ロジックで掴む成長のヒント

MECEってどう使うの? MECEの考え方は、必要以上に厳密に適用せず、優先度の高い事項をクリアにするための一助として活用することが大切だと感じました。分析の軸がぶれず、本来の目的に沿って問題点の整理ができる点が魅力です。 ロジックツリーは何? また、ロジックツリーを用いて要素を段階的に分解する流れは、問題解決における鍵となる要素の特定に非常に役立ちました。当初の計画値通りに進まない理由について、よりロジカルに原因を洗い出すことができたため、示唆出しの納得感が一層高まりました。

データ・アナリティクス入門

数字の裏を読む学びの秘訣

代表値の正しい選択法は? 代表値として単純平均に頼りがちですが、まずはデータ全体のばらつきや分布を十分に把握することが重要です。その上で、目的に合わせた適切な代表値を選び、比較する必要があります。 数字の羅列はなぜ不十分? また、単なる数字の羅列ではデータの特徴を正確に捉えることは難しいため、ヒストグラムなどを活用し可視化することが求められます。グラフは、プレゼン資料の飾りではなく、データを正確に理解するための必須のプロセスです。
AIコーチング導線バナー

「活用 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right