データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。

クリティカルシンキング入門

論理的整理で変わる!伝達力アップ術

論理的整理で伝わる? 話す内容を論理的に整理し、目的やその理由を明確に説明することで、自分自身も相手も理解しやすくなることが分かりました。このプロセスにおいては、主語や述語を意識し、相手の立場や状況を考慮することが、より伝わりやすくなる要因です。 未来への設計はどう? 過去、現状、そして未来に至るまで、説明責任を果たす際や新しい企画や提案を行う際には、この方法を用いることで、理解度を高め、物事をスムーズに進めることが可能になりそうです。普段のメールや報告書、そして企画書においても活用できると考えています。 口頭と文章の違いは? 相手に口頭で話す場面や、文章にまとめる場面において、思いつくままに話したり記載したりせず、論理的に構成し、整理された形で簡潔に言語化する習慣を身につけようと思います。特に仕事で広告や広報活動を行う際には、この意識をさらに高めて取り組まねばならないと感じています。

データ・アナリティクス入門

実践へつなぐ振り返りのヒント

プロセス整理の効果は? これまでの学びを活かして課題に取り組む過程で、プロセスごとに整理して考えることで、闇雲に取り組むよりも効率的に時間を短縮できることを実感しました。今後は、What→Where→Why→Howの視点を意識しながら課題解決に臨んでいきたいと考えています。実務ではまだ訓練が必要だと感じるため、講義で学んだ自分の身近で取り組みやすい内容から実践していこうと思います。 データ活用の成果は? 2ヶ月前に新たな環境やシステムが導入されたため、その効果を検証する目的でデータを活用してみたいと思います。もし改善が見られない場合には、改めてWhat→Where→Why→Howのアプローチを試してみるつもりです。 新手法の可能性は? また、A/B分析の活用場面は現状の職場では明確な適用例は思い浮かびませんが、新たに検査項目を導入する際には有効な手法となる可能性があると考えています。

データ・アナリティクス入門

変数分解で広がる学びの可能性

MECE活用の秘訣は? 問題解決を行う際は、もれなくダブりなく切り分けた状態でMECEを意識し、ロジックツリーを活用してアイデアを出すことが大切です。分解方法としては、層別分解と変数分解があり、様々な切り口で意味ある分類を行うことが求められます。最終的に一つの案に絞る際は、ロジックツリーで複数の案を出した後、評価基準に基づいて選定する手法が有効だと感じました。今回、これまで慣れていた層別分解に加え、初めて変数分解での案出しを実践してみることにしました。 品質改善はどう考える? 製造業での品質不良分析や、売上向上を目的とした修理データの分析にも、MECEやロジックツリーを用いた要因分析が役立ちます。たとえば、層別分解では製品別や地域別で分類し、変数分解では客単価×客数や数量×単価といった切り口を採用できます。これにより、不良の原因を網羅的に洗い出し、的確な対策を立案することが可能となります。

クリティカルシンキング入門

心に響く!視覚で磨く伝える力

効果的な視覚情報の秘訣は? 情報を伝える上で、視覚的な情報の作り方が非常に重要であると改めて感じました。伝え方は環境や状況によって異なるため、目的に応じた最適な見せ方を選べるよう、視覚情報の表現方法の幅を広げる必要があります。 自分の視点で見る資料は? 普段目にする資料は、「自分ならどのように作るか」という視点で観察するよう心がけています。また、文章作成時には、アイキャッチの活用、文章の硬軟のバランス、そして読みやすい体裁の3点を常に意識し、読み手の立場に立って内容を確認する習慣を続けています。 プレゼン成功の秘策は? さらに、8月22日に他部署の行動変化を促すためのプレゼンテーションを実施する予定です。資料全体の構成や使用するデータの選定において、目的と対象に合わせた最適な見せ方を意識し、作成内容が理解促進に効果的かどうかを事前に第三者の意見を取り入れて確認する予定です。

クリティカルシンキング入門

可視化とMECEで提案力を強化!

可視化の重要性とは? 可視化できるものをまずは可視化していくことが大切だと感じました。もし可視化がしっかりとできていないと、分解する際にMECEの活用が正確にできないため、まずはしっかりと書き出していくことが重要だと思いました。 提案力を高めるには? 上司への提案や交渉の場面でも、この手法は非常に役立つと感じました。現状、提案する際にモレやダブりが多い傾向があるので、提案する際には特にMECEを意識して分解を自然にできるような能力を磨いて行動していきたいと思っています。 視点を変える方法は? まずは思ったことをすべて文字に書き出し、目的をきちんと設定することが大切です。また、傾聴することで立ち止まり、視点を変えることも必要です。直感と客観を交互に繰り返すことで分解の幅を広げていくことができます。伝わりやすくするためには、数値だけでなくグラフを用いて可視化することも重要です。

データ・アナリティクス入門

仮説と共に挑む成長の旅

仮説整理のコツは? 問題解決に取り組む上で、仮説を持つことの重要性を学びました。多くの仮説を出すことが望ましい一方で、考えが散らばってしまう可能性があるため、フレームワークを活用して体系的に整理することが有効です。また、仮説を立てる際には、その目的がコミュニケーションか問題解決か、あるいは過去・現在・将来のどの視点に基づいているのかを明確にしておくことが大切だと感じました。 原因特定の秘訣は? 問題発生時の原因特定をファシリテートする際には、議論が発散しないよう、仮説が結論に至るものなのか問題解決を促すものなのかを分類し、メンバーと共有することが必要だと実感しました。さらに、社内で問題解決のプロセスを議論する際の枠組みとして仮説を共通言語とすることで、検証マインドの向上、説得力の強化、問題意識の向上、スピードアップ、行動の精度向上につながることを丁寧に伝えていく意義を感じました。

データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

データ・アナリティクス入門

データ分析でビジネスを変革する方法

「分析の目的」をどう明確化する? 分析のポイントを誤ると意味がなくなるため、「何のために」「どの部分を」分析するのかを明確にする必要があります。数字を見る際には、その意味がはっきり理解できなければなりません。特に知識がない人にもわかりやすい数字の提示の仕方が重要です。 ビッグデータ活用の効果とは? ビジネスにおいて、数字はある程度の説得材料となり、クライアントにとっても理解しやすいものです。ビッグデータを活用して根拠資料としてクライアントにわかりやすく伝えることができれば、分析の意義は高まり、ビジネスチャンスも広がります。 分析力を高めるステップ まずは分析の基礎を固めることから始め、目的や意図を明確にすることで分析力を身につけます。それにより、根拠のある資料を作成しクライアントに明確性をもって伝達できるようになり、結果としてビジネスチャンスも広がるでしょう。

クリティカルシンキング入門

考えを伝える魔法のレシピ

伝え方ってどうすべき? ビジネスの現場で、伝えたいことが伝わりにくい理由について理解が深まりました。単にコミュニケーション能力の差ではなく、考えをどのように伝えるかというスキルの有無が大きく影響していると感じます。今回、その考え方を学べたことで、口頭でも文章でも「何を伝えたいのか」という目的を明確にし、論理的な順序で考えをまとめる重要性を再認識しました。 部署で情報伝達は? また、多くのメンバーが所属する部署において、情報を正確に、共通認識として伝えるための工夫が必要だと実感しています。メールを作成する際には、日本語が正しく使われているか、また順序立てた手順で文面が組み立てられているかをセルフチェックし、場合によっては対象者にも確認してもらっています。会議や面談の前には、目的と考えを明確にするために、ロジックツリーなどを活用し、思考の偏りが生じないよう努めています。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

「活用 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right