データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。

デザイン思考入門

顧客視点で描く安心サイト改革

ホームページの改善ポイントは? 自社のホームページを改めて顧客目線で確認したところ、改善すべき点が見えてきました。特に、ターゲットとなる65歳以上の高齢者やその家族に配慮したデザインやレイアウトが十分でなく、文字が小さかったり背景と重なって見づらい部分があると感じました。また、各コンテンツの配置が分かりにくく、利用者が最も知りたい「アクセス」や「診療科目」の情報が深い位置に隠れている点も問題です。こうした点を患者さん目線に立って改めて整理する必要があると感じました。 プロトタイプ作成の意義は? また、プロトタイプの作成については、実際の作成機会は少ないものの、今後当院のミッション・ビジョン・バリューを展開するツール(ポスターやメッセージカードなど)の作成時に、いくつかのアイデアを出し合い、関係者と共有しながら進めることで手戻りを防ぎたいと考えています。 さらに、ホームページを作成する際には、こちらが伝えたい情報だけでなく、利用者が何を求めているかを踏まえ、双方の目的に沿った内容を掲載することが重要であると学びました。改めて顧客視点で当院のホームページの改善点を関係者と議論していく必要があると思います。 プロトタイプの制作に関しても、途中でこまめに作成し、関係者からフィードバックを受けることが大切だと感じました。細かい意見交換や認識のすり合わせを行うことで、手戻りや追加要件の発生を抑え、無駄な時間やコストの削減につながると考えています。

クリティカルシンキング入門

振り返り文で学ぶ問題解決テクニック

物事を分解する利点は? 「物事を分解する」という手法は、複雑な問題や課題を整理し、本質を掴むために非常に有効だと感じました。分解することで得られる利点として、全体像の明確化、真実への気づき、主観や思い込みの排除、具体的なステップの可視化が挙げられます。これにより、行動に移しやすくなり、自信がつき、切り口が増え、無駄が減ることで、コミュニケーションも円滑になります。 IT業界での分解の活用法は? 私はIT業界で働いています。分解を効果的に活用する場面としては、システム障害時のトラブルシューティングがあります。アプリケーションエラーの要因や原因を細分化して判断します。また、要件定義やシステム設計では、顧客の要求を具体的に細分化し、それぞれの機能や動作について詳しく検討・具現化します。プロジェクト管理やコードレビューにおいても、工程やタスクを細分化して効率的に管理し、効果的なレビューを行います。 明確な目標設定の重要性は? 実践においては、明確な目標設定が重要です。例えば、障害対応や要件定義の工程で課題を意識し、発生した問題を分解して整理します。分解された要素の因果関係を確認し、特に障害対応時には優先順位の判断も必要です。また、仮説を立てる姿勢やツールの活用も有効です。こうしたプロセスを定期的に繰り返し、振り返りを行いながら、自分のスキルとして確実に身につけていきたいと思います。

クリティカルシンキング入門

視覚化とAI活用で資料作り革命!

視覚化は本当に必要? 視覚化の重要性を再認識し、「なんとなく」で資料を作らないこと、伝えたいことが明確なスライドを作ることの大切さを学び直す機会となりました。私は普段の業務でMicrosoft Copilot等の生成AIを使って資料や議事録の要約を行っていますが、生成AIはあくまでツールに過ぎません。何を伝えたいかを常に自分自身で考え続けることが相手の理解を助けると強く感じています。 資料作成はどうすべき? 経営企画の一環として、経営会議での財務報告を担当しており、一目見ただけで理解できる資料作成を心掛けています。また、多くの場面で議事録作成をしていますが、AIサービスをトライアルする機会を得ました。これは補助的には優れたツールですが、議事録を作成する際には何を記録すべきか、参加者が何を確認したいかをしっかり意識する必要があります。このため、全てをAIに任せることはできないと感じました。 学びは何を示す? 今回の学びを通じて、何を伝えるべきかを人が考える意義を再認識しました。幸いにも、今回の学習内容は業務で即活用できるものであり、資料作成時には常に意識していきたいと考えています。また、全社的な財務数値管理を一歩進め、部門メンバーが状況や課題を理解できる資料作りにも力を入れたいと思います。そのためには、データ収集の自動化を進め、効率化を図っていくことも考えています。

クリティカルシンキング入門

問いが導く学びの未来

イシューって何が大事? イシューを明確に設定することは非常に重要です。また、常に問いを残し、その問いを共有する姿勢が大切だと感じます。問いという形にすることで、問われた際に答えを出そうという意欲が湧き、余計なことを考える余地がなくなります。その結果、論理的な思考が促され、問題解決に繋がると考えています。加えて、知識は「インプット」から始まり、「知識の活用によるアウトプット」、さらに「他者からのフィードバック」や「振り返り」といったサイクルを継続することで身に付くと思いました。 どう計画に反映する? また、会社の方針を自部門の計画に反映させるとともに、その計画を分解して部下に展開する際にも、このアプローチは有効だと考えます。経営層の指針が正しく、かつ方向性を変えることなく伝わるためのツールとしても活用できるのではないかと思います。 計画の検証、どう進める? 計画立案にあたっては、まず必要な項目や要素を漏れなく、かつ重複なく洗い出すことが求められます。そして、思い込みを排除し、客観的な視点で検証することも重要です。さらに、計画の中でイシューを特定し、対応策が論理的であるか、また設定した枠組みから逸脱していないかを慎重に考える必要があります。最後に、各対応策の根拠を明確にし、その正当性を確認することが、計画の成功に向けた鍵となると感じました。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

データ・アナリティクス入門

小さな実験、大きな変革

A/Bテストの意義は? 今週は、A/Bテストの重要性とその実施ポイントについて学びました。効果検証においては、目的と仮説が非常に大切であり、1要素ずつ同条件で比較することで、検証の精度が上がると実感しました。この考え方は、今後の業務改善にも大いに役立つと思います。 現場での工夫は? 学んだ内容は、現場での作業効率向上や安全対策の見直しに応用できると感じました。たとえば、同じ作業を複数の方法で実施し、作業時間や事故発生の状況を比較することで、どの方法がより効果的か客観的に判断できます。また、新しい手順やツールを導入する際には、いきなり全体に適用するのではなく、まず小規模でテストし、得られたデータをもとに判断することで、リスクを抑えた改善が可能となります。こうした手法は、現場改善の精度を高め、納得感を持たせるためにも有用です。 改善策はどのように? まずは、改善したい作業手順を一つ選び、従来の方法と新たに提案する方法の両方を明確に定義します。その上で、両手法を同条件・同期間で実施できるよう現場を調整し、作業時間や安全面、作業者の負担などのデータを記録・比較します。実施前には「どちらの方法がより効率的か」という仮説を立て、検証の目的を関係者と十分に共有してからテストを行い、効果が確認された場合は現場全体への展開を検討する方針です。

クリティカルシンキング入門

問題解決の視点を広げる学び

本質は何だろう? 問題解決を行う際には、まず何が問題なのかをしっかりと定義することが重要です。問題が本当にその部分にあるのか、あるいは「そもそも」といった観点で見直してみることも大切です。その後の分析やアクションを行う際にも、常に問いを意識することで、本質から逸れることなく、もしズレが生じた場合には適切に軌道修正することができます。 対策はどう考える? たとえば、チームに人手不足という問題がある場合には、人員を増やすという対応だけでなく、同時に生産性の向上や仕組みの効率化を図ることが求められます。また、システム操作が煩雑で非効率だと感じた場合には、システムの改修を行うだけでなく、補助的なツールや直感的に理解しやすいマニュアルの整備を通じて生産性の向上を目指します。こうした問題を複数の視点から捉え、それぞれに合ったアプローチを実施することが重要です。 気づきはどう引き出す? また、メンバーに対して問いの重要性を示すことで、彼らから新たな気づきを得ることができるかもしれません。定期的に自分の活動を見直し、無意識のうちにバイアスがかかっていないかを確認することも重要です。他の人から異なる視点や意見を求め、自身にはなかった新たな問いを取り入れることで、自分自身の視野を広げることができます。

クリティカルシンキング入門

ナノ単科で見つけた未来のヒント

アイキャッチは有効? 【目を引くキャッチフレーズで印象づける】 資料作成や情報伝達において、まずは冒頭に目を引くアイキャッチを配置することが重要です。これにより、読む人の興味を引き、伝えたいポイントが一目で理解できる構成になります。 視覚表現は伝わる? グラフや図、文字の色、フォントといった視覚要素は、要点をパッと伝えるための有用なツールです。資料全体の構成や内容を整理し、何が一番伝えたいのかを明確に示すことで、相手に情報を探させない資料作成を実現できます。 グラフの使い方は? アンケート収集や実績報告、データを基にした考察の場面では、グラフを用途に合った形で活用することが求められます。色使いは控えめにしつつ、強調すべきポイントが際立つように工夫することが大切です。 文章の見直しは? また、資料や文章は提出前に客観的に見直し、伝えたい内容が確実に伝わるかどうかを確認することが必要です。読み手の視線がどの順序で情報を捉えるかを考慮し、論理的な構造と流れを意識した文章作成を心がけましょう。 強調方法は効果的? このように、シンプルで分かりやすい表現と、効果的な視覚的強調を組み合わせることで、資料の要点がすぐに把握できるコミュニケーションが実現します。

リーダーシップ・キャリアビジョン入門

対話で紡ぐ本音の物語

人は本当に理解できる? 「結局のところ、人のことはわからない」という言葉を胸に、各々のモチベーションの違いに寄り添う必要性を実感しています。動機付けの要因とそれに伴う衛星的な要因を整理し、マズローの5段階欲求を意識することで、相手の主観に合ったアプローチを図っています。 本音を引き出せる? フィードバックについては、相手から得られる本音を引き出すことに重きを置き、こちらが過剰に話さない姿勢が大切であると再認識しました。相手の意見を尊重し、自然な流れで対話を進めることを心がけています。 アンケート結果はどう? また、フレームワークをサポートするツールとして、過去のアンケート結果を活用しています。具体的には、定性面や定量面の結果を参考にしながら、マズローの欲求段階と照らし合わせた仮説を立て、訂正面と定評面の両面からスタッフへのアプローチを試みています。 面談で何を確認する? 普段は各拠点で異なるワークスタイルで業務を進めているため、次回招集日(2月25日)に面談を設定し、現状の個々の業務状況や目標達成度、さらには来期に向けた期待と不安について意見交換する予定です。事前に各スタッフごとに仮説を立て、それを基に対話から必要な情報を引き出す取り組みを進めています。

「確認 × ツール」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right