クリティカルシンキング入門

問いでひらく成長の扉

どんな問いが力になる? 「問いの立て方」を通じて、物事の見方や考え方がどれほど深まるかを実感しました。単に与えられた情報を処理するのではなく、どのような構造で考え、どの問いを起点にするかによって、新たな気づきや適切な打ち手が導かれる点について、改めて整理することができました。 データは何を示す? 特に、観光客数の月別データと目的別データを用いた総合演習は、自分の学びを定着させる絶好の機会となりました。一見、繁忙期や閑散期といった単純な数字も、「目的別」や「季節別」といった切り口を用いることで、たとえば「冬は観光客が少ないが、癒しを求める割合が高い」という特徴が明確になり、それに基づいた打ち手が考えられることに気づきました。 切り口変える理由は? また、実務の現場では、新規事業の仮説検証の際に、最初に目にする顧客データを単に属性別に見るだけではなかなかヒントを得られません。しかし、「購入理由」や「導入経路」、「利用される状況」といった視点で切り口を変えると、急に有用な示唆が得られることを、これまでの実践でも何度も確認してきました。分類の軸を変えるだけで全体像の意味合いや優先順位が変わり、この体験は非常に印象深いものです。 なぜ思考は有効? 今回の学びの価値は、これまでの実務経験とも結びつけながら、「なぜこの思考プロセスが有効なのか」「どこに再現性があるのか」を自分なりに言語化できた点にあります。問いの立て方を、個人の思考にとどまらず、チームやクライアントとの合意形成に活用するための再現可能な手法として捉えることができるようになりました。 何のために問う? さらに、「本質的な問い」とは何かを求める中で、その問いがどの目的に接続しているのか、すなわち「何のためにそれを問うのか」という視点の大切さにも気づきました。問題の背後や上位にある目的を意識すれば、問いそのものの価値が高まり、時間やリソースの限られた中でも本質に迫る打ち手にたどり着けると感じました。この「問いの意味構造を見る力」は、今後の実務においてさらに意識して鍛えていきたい視点です。 どこから始める? 私自身、クライアントとの対話や議論の場では、スライド資料だけでなく、構造化モデリングツールを用いて仮説や課題構造をリアルタイムに可視化する機会が多くあります。こうした場面では、「どこから構造を立ち上げるか」、すなわち「問いの立て方」が成功の鍵となります。問いがあいまいだと、浮かび上がる構造も不明確になり、議論の焦点が定まらなくなるため、今回の演習は思考習慣の向上に大いに役立ちました。 どう対話が始まる? また、「問いを立てる」という行為は、考えるための起点であるとともに、相手との対話を始める契機でもあると強く感じました。これまで「答えを出すこと」や「ロジックの整理」に注力してきましたが、クライアントやチームメンバーとの協働においては、「なぜそれを議論するのか」や「何が明らかになれば次に進めるのか」といった問いかけが、時に大きな価値を持つことを実感しています。 どんな問いが導く? 今後は、コンサルティング方針やワークショップの設計においても、「どんな問いを置くと相手の考えを引き出せるか」「情報提示の背後にある目的は何か」といった点を意識し、単なる情報伝達にとどまらない対話の起点を構築していきたいと思います。問いの精度と設計力を高めることが、実務における支援の質や成果に直結すると確信しています。 問いが成す未来は? 今回の学びは、自分がこれまで積み重ねてきた経験と結びついており、問いを立てる力がコンサルティングの根幹を成す重要なスキルであると再認識する機会となりました。今後も、問いを通じた思考と対話を積極的に実践することで、より本質に迫る支援の実現を目指していきたいと考えています。

戦略思考入門

経営戦略で企業の未来を切り拓く

経営戦略と戦術の違いは? 印象に残った2つのポイントについて述べます。 第一に、経営戦略とは、企業や事業の目的を達成するために構造化されたアクションプランであり、長期的な視点と対極的な見地を持つ必要があります。一方で、戦術は短期的な手段として定義されます。戦略が不十分な会社では、部門や社員の行動が分散し、全体としての成長が限定的になる危険があります。孫子は戦略について「戦を略すこと」と述べ、消耗戦を避けるための創意工夫の重要性を強調しています。また、マイケル・ポーターは目標達成のために「やること」と「やらないこと」を明確にすることの重要性を強調しています。 経営理念とビジョンの関係は? 第二に、経営戦略は経営理念やビジョンと密接に関わっているという点です。経営理念は自社の存在意義を果たすべきミッションを指し、基本的に変わることはありません。ビジョンは将来実現すべき具体的な姿を指します。経営戦略はこれら理念とビジョンを踏まえて策定される行動計画です。戦術がいくら優れていても、戦略が脆弱であれば部分的な最適化に陥り、企業全体の利益や成長は限定的になります。 コンタクトセンター運営の戦略は? コンタクトセンター事業の運営において、経営戦略のポイントを次のように活用できると考えています。 まず、長期的視点と統一性を持つことが大切です。事業の目的やビジョンを明確にし、それに基づいた長期的な戦略を策定します。これにより、部門や社員の行動が統一され、全体の成長が促進されます。 次に、経営理念とビジョンの連携を重視します。事業の存在意義やミッションを再確認し、それに基づいた戦略を策定することで、将来の具体的なビジョンを描き、それに向けたアクションプランを策定します。 戦略と戦術のバランスはどう取る? さらに、戦略と戦術のバランスも重要です。目標達成のためにやるべきこととやらないことを明確にし、戦略に基づいた具体的な戦術を実行することが求められます。 また、創意工夫と柔軟性も欠かせません。創意工夫を通じて競争優位を確立し、市場の変化や顧客のニーズに柔軟に対応できるよう、戦略を定期的に見直し、修正することが重要です。 戦略策定における具体的アクションは? 具体的なアクションとしては、まず経営理念とビジョンを再確認し、チーム全体で共有します。次に、長期的な経営戦略を策定するため、現状分析、目標設定、戦略の立案というステップを踏みます。現状の事業環境や競合他社の動向を詳細に分析し、具体的な目標を設定します。限られた人員でも運営できる戦略を立案し、働きやすい職場環境の推進や主要なコミュニケーションチャネルの最適化を図ります。 人材育成と戦略の進捗確認は? さらに、戦略に基づいた人材育成を実施し、特に事業企画の知見を深めるための教育プログラムを導入します。AIや自動化ツールの導入を検討し、業務効率を向上させるとともに、チーム内外でのコミュニケーションを強化します。定期的なミーティングやフィードバックセッションで戦略の進捗状況を確認し、必要に応じて調整を行います。 持続可能なサービス開発は? 最後に、新しいサービスの開発や顧客満足度の向上を目指すプロジェクトを立ち上げます。持続可能な運営と価値創造を実現し、将来の事業環境の変化に対応できる組織を構築します。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

デザイン思考入門

実践で磨くプロトタイプの極意

次回の進行はどうする? 次回、デザイン企画に取り組む際には、今回学んだプロトタイピングのステップを軸に、各段階で何を検証するかを明確にして進めたいと考えています。まず、コンセプトは言葉や写真、場合によっては動画を用いて確認し、そのアイデアが受け入れられやすいものか、分かりやすいか、また実際に欲しいと感じてもらえるかを見極めます。次に、デザイン画を通じて、顧客のニーズに合致しているかどうかをチェックします。 デザイン感覚はどう感じ? また、実際のモックアップを用いて、より細かなデザインの要素や機能、操作感を体感し、その使用感が十分かどうかを確認するとともに、フィールドテストを実施してユーザーからのフィードバックを得ることで、さらなる改善点を抽出したいと考えています。動画講座にあった利用イメージを動画化する手法も、ユーザーがどのようなシーンで製品を使いたいかといった意識を具体的に引き出すために有効だと感じました。 検証項目はどう決める? これまで、ウェブアプリなどではプロトタイピングツールを使って操作画面イメージの共有やUXのチェックを試みたものの、プロセスやチェックポイントを明文化して整理するまでには至っていませんでした。今後は、具体的な検証項目を事前に定め、整理した上で進めることで、より実効性のある確認やヒアリングが可能になると考えています。 フィードバックはどう伝える? 今回の課題では、デザイン画の作成までに留まりましたが、事前に欲しい機能やデザインの要件を整理し、デザイン画を作成した点は評価できると感じています。今後は、このデザイン画を共有しフィードバックを得た上で、改良すべきチェックポイントを明確に洗い出し、ブラッシュアップしていく予定です。 ステップごとに確認は? プロトタイピングの各ステップについては、まずコンセプトの確認において、言葉や写真、動画などを活用し、コンセプトが受け入れられるかどうかを検証します。次に、デザイン画を用いてデザイン自体の魅力や、機能や要件が適切に反映されているか、情報設計が適切かどうかを確認します。現行製品がある場合はその比較も有効ですが、全く新規の場合は試作とデザイン画を繰り返しながら進めることになるでしょう。 操作感は十分? さらに、実際のモックアップを用いて操作感や細部のデザイン、機能性を実体験し、製品が価格に見合っているかどうかも確かめます。最後に、試作品を用いたフィールドテストで、実際の使用環境下での操作感、耐久性、そして予期せぬ利用パターンの発生を確認することが大切です。 改善策はどこに? こうした各ステップで、手段とチェックポイントを整理し、必要なヒアリング項目や観察項目を明文化しておくと、次回以降のプロセス管理や改善につながると感じています。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

クリティカルシンキング入門

視点が広がる成長の軌跡

どうして客観的に考える? クリティカルシンキングは、客観的思考を持つもう一人の自分を育て、ビジネスにおいてリスクを回避するための基盤となります。頭の使い方を理解し、自分の考えを客観的かつ論理的に検証することで、状況を多角的に捉えられるようになるのです。 どうして視点を広げる? また、文章では「視点」「視座」「視野」の3つの視を意識することが強調されています。無意識のうちに制約を設けてしまうことがあるため、現状の考え方に制限がかかっていないかを点検しながら、思考の枠を広げていくことが求められています。 ロジックツリーは有効? 思考の偏りに対処するには、ロジックツリーなどのツールを活用し、全体を部分の集合に分解する手法が有効です。これにより、情報をもれなくダブりなく整理するMECEの原則にも沿った考察が可能となり、主観的な直感や経験だけではなく、客観的な説明責任を果たすための表現や方法が身につきます。 どうやって効果的に伝える? 実際の業務では、データ分析やデジタルマーケティング、カスタマーエクスペリエンスなど、分析結果を伝える機会が多くあります。社内はもちろん、一般の方向けにもわかりやすく説明できるよう、客観的な視点をもとに筋道を立てた情報伝達を実践することが重要です。自分自身の思考や表現のクセを可視化し、書き起こすことで新たな発見や柔軟な考え方を身につけることが期待されます。 人間らしさはどう守る? さらに、デジタル化の波が進む中でも、人間らしさは大切にすべき要素です。新技術を取り入れると同時に、感情や言葉を使って相手の心に響くコミュニケーションを磨くことが、これからのイノベーションにとっても重要なアプローチとなります。 振り返りで何を発見? 講座を振り返る際は、学んだ基礎を業務の前後で意識し、実際にどのように活かせたかをシミュレーションしてみるとよいでしょう。普段無意識に行っている前提について自分で気づくとともに、実践の中でその濃度を計測し、改善のポイントを見つけ出す取り組みが効果的です。 誰に、どう伝えるのか? また、説明する際は、誰に伝えるのかを意識し、限られた時間内に要点を詰めて述べる練習が推奨されます。場合によっては自分の説明を動画で確認することも、自己評価や改善に役立ちます。 書く力はどう伸ばす? 最後に、書くことも重要な学びの一環です。文章による要約や表現のクセをチェックしながら、論理性と客観性を深堀するトレーニングを継続することで、自分の伝える力が着実に向上することを実感できるでしょう。

デザイン思考入門

対話が拓くプロトタイピング

試作で既視感感じる? 試作は、プロダクトデザインや建築プロジェクトで通常実施される工程であるため、どこか既視感を覚えました。また、WEBのインターフェイスデザインに見られる機械のスイッチパネルといったメタファーは、自身の専門分野に近いこともあり、非常に理解しやすいと感じました。 WEB手法は建築に合う? WEBデザインと同様のプロセスが、建築や施設管理運営のデザインにどのように応用できるのか、非常に興味深いと感じています。これまでの事例に照らし合わせ、応用の可能性を検討してみるとともに、自身の事務所のホームページのリニューアルにも活用する予定です。 建築手法は信頼できる? 建築業界で活用される開発手法は、長い歴史と多くの実践に裏打ちされているため、精度が高く実務にも適していると実感します。しかし、似た考えを持つ人々によって運用されるため、気づかぬうちに独自の進化を遂げる場合もあります。また、竣工後のオペレーションや保守管理におけるプロトタイピングについては、まだ標準化された手法が確立されていないのが現状です。 デジタル手法は革新的? 一方、デジタル分野ではアジャイルなど、他分野にも影響を与える新たな開発手法が続々と生まれており、今回学んだフレームワークも積極的に研究し、応用してみたいと思います。機会があれば、実際にデジタル業界で活躍されている方のお話も伺いたいと考えています。 評価の落とし穴は? プロトタイピングの課題として、専門家でないユーザーが成果物の内容よりも表現技術の巧拙に左右されやすい点が挙げられます。上手な絵、最新の機材を活用した表現、巧みな言葉遣い、さらにはアイデアの発案者の知名度や地位によって、ユーザーの評価が影響を受けることがあるのです。優れたプロダクトを生み出すためには、制作者自身も厳しい目線を持つユーザーとの協働が必要だと感じています。 プロトタイプの役割は? また、プロトタイプは単なる開発工程の一部に留まらず、ユーザーとの対話のためのメディアとして機能すること、さらには開発チーム内のコミュニケーションツールにもなることを改めて確認できました。 意味の共有はどう? こうしたポイントは理解しているつもりでも、実際の開発後半では、開発者のアイデアを強調するためのプレゼンテーションツールとして利用され、ユーザーや他のメンバーが十分に参画できなくなるケースも少なくありません。今後の開発プロセスでは、プロトタイプの本来の意味をチーム全体で共有し、全員が対話できる環境作りに注力したいと考えています。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

データ・アナリティクス入門

ゼロからプラスへ実践で拓く未来

どうして実践は難しい? ありたい姿と現状のギャップを何度も意識しているものの、実際に実践するのは非常に難しいと感じました。その中で、マイナスをゼロにする問題解決とゼロをプラスにする問題解決の違いに注目し、後者ではありたい姿をステークホルダーと共有することが重要という点がとても印象に残りました。デジタル技術が進む現代においては、問題発見力が一層求められる中で、TOBEを構想する力だけでなく、その構想について関係者と認識を合わせる共感力の重要性を再確認する機会となりました。 どの分析で理解する? また、what、where、when、whyのフレームを問題分析に取り入れるというシンプルなアイデアは、これまであまり意識してこなかったため、新鮮な学びとなりました。自分で活用する際も、他の人に説明する際も非常に分かりやすく、実用性が高いと感じています。 ロジック知識はどう? ロジックツリーやMECEのフレームについても、改めて説明を受けることで新たな気づきがありました。特に、層別分析と変数分析のジャンル分けは、普段無意識に行っていた部分が大きかったため、今後は意識的に思考のスイッチングに活用していきたいと考えています。 基本はなぜ大事? さらに、GAiLのセッションを通じて、経営における基本を徹底すること、すなわち凡事徹底の重要性を実感しました。WEEK0で学んだ事例に倣い、慣れや直感に頼らず、都度基本に立ち返って自分の手法を客観的に見つめ直すことが必要だと感じました。 切り口をどう捉える? また、さまざまなフレームワークや切り口が存在することから、情報を学べば学ぶほど実践時にどれを採用すべきか迷うこともあります。しかし、生成AIをパートナーにすれば、自分が直面する課題に対して最適なツールや切り口を模索する際の有力なサポートになると新たな活用方法を見出しました。 改善策は何か? 具体的な今後の改善点としては、まず凡事徹底のために自分が立ち返る教科書として本棚を見直すことから始めます。次に、ロジックツリーの活用については、自分が使用しているアウトライナーの新たな用途として、思考整理に取り入れ、層別と変数の切り替え(国語的分解と算数的分解)を意識して活用していきたいです。さらに、分析を始める前に一度立ち止まり、生成AIとともに最適なツールと切り口を検討することで、より効果的な問題解決のアプローチにつなげられると考えています。

データ・アナリティクス入門

ビジネスフレームワークで仮説を確かめる方法を学ぶ

効果的な仮説の立て方は? 今回は、「Why(原因の分析)」について学びました。このステップでも「What」「Where」同様に、複数の切り口を持ち、複数の仮説を立てることが重要だと実感しました。特に、切り口の感度の良さや仮説の筋の良さが問題解決の精度に大きな影響を及ぼすことを改めて痛感しました。高い視座と広い視野を持ち、ビジネスフレームワークを活用して大局的かつ網羅的に複数の仮説を立てることが有効だと学びました。 具体と抽象の使い分け方は? また、仮説の分類として「問題解決の仮説」と「結論の仮説」があり、前者は具体化、後者は抽象化が肝要です。具体と抽象を使い分けて行き来できるように練習することが必要だと改めて感じました。 データ検証のプロセスの重要性は? そして、仮説は検証して初めて意味を持ちます。データを収集し(既存データに不足があれば新たにデータを集め)、指標を定め、その指標で比較できるように適宜データを加工し、段階的に仮説を絞り込み検証を繰り返すプロセスが重要であると学びました。 ツールを活用するために何が必要か? ツールがあることは助かりますが、使いこなせなければ意味がありません。仮説設定やデータ収集・結果の比較を通して「経験や勘による決め打ちや意図的な絞り込み」という負の側面が出ないように、正しいプロセスを意識し、目的に適したツールを正しく使いこなせるように練習を繰り返したいと考えています。 次期事業計画の策定にどう活かす? 次期中期事業計画の策定時には、このプロセスを活用します。「なぜ今ターゲット顧客から選ばれているのか」を深堀りし、仮説を設定してその再現性と競争優位の持続可能性を検証したいと思います。どのビジネスフレームワークを使って仮説を設定し、どの指標で比較し絞り込むかを考え、一つずつ丁寧に進めていきたいです。 客観性と説得力を保つためには? 『経験や勘で導き出した答えの確からしさを、ビジネスフレームワークを用いて正しいプロセスを踏むことで確認する』という意識を持ちながら、フレームワークの選定や指標の設定、データの収集・比較、仮説の絞り込みなどの過程で、経験や勘による決め打ちや結論ありきの意図的なものにならないよう常に意識し、客観性と説得力を担保するように努力します。

アカウンティング入門

B/Sで読み解く企業の秘密

B/Sの違いをどう見る? B/Sについては、これまで業務の中で目にする機会が少なかったため、活用するチャンスがなかったが、今回のゲイルや総合演習を通して、PLとの関連性と役割の違いを認識し、企業を多角的に見るツールであることを実感することができた。特に、インフラ産業とクラウドビジネスのB/Sを比較する中で、インフラ産業は車両や駅舎、電線設備などの有形固定資産を多く保有(70%以上の割合)し、成熟した産業であるため負債が大きくなりがちである一方、クラウドビジネスは店舗や設備を必要としないため有形固定資産が少なく、新興の産業故に負債を抑え、純資産が大きい傾向があるという違いが明確に理解できた。 負債運用の意味は? また、アキコの事例を用いたゲイルでは、「負債」の考え方について学ぶことができた。負債を極力抑える運用の重要性と、成長のチャンスを逃さないために時には必要な負債が発生するという現実も示され、安定した企業は負債が大きくなりやすい一方、個人で事業を展開する場合は負債を小さくしておくのが望ましいという点を考えさせられた。B/Sは、お金の「調達」と「使途」のバランスを把握できる資料として、企業の成り立ちそのものを理解する上で非常に有用であると感じた。 自社B/Sの現状は? まずは、自身の会社のB/Sを確認し、分析を行うことが必要だ。現状を正しく把握し、運営上の数値管理のために何を追うべきか、またどの点に注力するかといった運営上の課題を明確にすることに役立てたい。同時に、他社のB/Sを読むことで成り立ちの違いを理解し、自社の今後の戦略について考える材料にしたい。 業界分析はどう進む? さらに、薬局業界で公表されているB/Sを確認し、流動資産、固定資産(有形固定資産、無形固定資産)、流動負債、固定負債の各項目とその組成について把握する。そして、自社のB/Sを見直し、企業の成り立ちや現状を正確に把握することが求められる。現在、5月に実施予定の管理者向け研修資料作成にあたり、財務三表について分かりやすく噛み砕き、自社の状況と外部環境を具体的に受講者に説明できるよう、PLやB/Sを再度読み直し、情報の整理を進めていく。こうした人に教えるプロセスを通じて、知識の定着を図っていきたい。

データ・アナリティクス入門

データ分析の目的を意識して成果を出そう

データ分析の目的は? 「①データ分析の目的を意識すること」と「②正しく比較するために条件を揃えること」の2つが特に印象に残りました。これまでの仕事では、目の前にあるデータを漠然と加工し、何か分かることがないかと試行錯誤しているだけだったと改めて感じました。 明確な分析の必要性を感じる 今後は「何のためにデータ分析するのか」「何が分かると嬉しいのか」を明確にした上で分析に取り組むつもりです。また、自分の悪い癖として「結論ありき」のデータ収集や分析を行う傾向があると自覚しました。具体例では、「●●●という結論を導くために都合の良いデータを探してくる」という方法を取っていましたが、それだと誤った意思決定に繋がる可能性があります。常に正しい条件でデータを比較することの重要性を強く感じました。 賃金制度の課題とは? ①新しい賃金制度の検討に活かしたい。自社の賃金制度に関する課題を明確にするためには、競合や労働市場との比較だけではなく、「現状の給与分布が自社の賃金制度の考え方に沿ったものか」、「自社の人事ポリシーに沿ったあるべき給与分布はどうあるべきかと現状との差異」を正確に比較したいです。 目的達成のためのツール選び ②新しいビジネスツールを導入する際の分析に活用したい。労働安全衛生関係の教育ツール導入を検討しているため、目的を明確にし、「目的を達成できるツール」を選定するための比較を実施していきます。 具体的に言うと、自社の賃金制度の課題を明確にするためには、競合他社や労働市場との年齢や等級ごとの給与比較は当然ですが、それ以外にも比較対象とする要素があるはずなので、漏れないように洗い出します。競合等と比較する際には条件をしっかり揃えることが大切です。また、ツール導入については「何のために導入するのか」「その目的を達成するために必要な要素は何か」「それぞれの要素の基準は何か」をしっかり考えて最適なツールを選びます。 継続的な評価が必要? ツール導入後の経時変化も確認し、継続使用を検討します。いずれの取り組みも、目的や比較対象がズレていないか、要素に漏れがないかを上司やチームのメンバーとよく議論しながら進めていきたいと考えています。

「確認 × ツール」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right