クリティカルシンキング入門

グラフと装飾の新発想で資料改善!

グラフ選びの理由は? グラフの選び方について、これまでは感覚的に選んでいましたが、今回の講座で得た知識との差異はありませんでした。しかし、具体的に「このような場合はこのグラフを選ぶ」という言語化ができていなかったため、今後は理由を持ってグラフを選びたいと考えています。 文字装飾の見直しは? 文字装飾の選び方についても学びがありました。装飾は「付け足す」のではなく、「削る」ことが重要だということです。学生時代に、赤字や太字、下線で強調した際に「やりすぎだ」と言われた経験もあり気を付けていましたが、特にタイトル位置では装飾が不要であるという点は新たな学びでした。 報告資料の工夫は? 分析データの報告時にこれらの知識を活用したいと考えています。普段は分析データに触れない他部署の人に報告資料を送ることがありますが、ここで適切でないグラフが使われていたり、全体の構成が不明確だったりすると、受け取る側が混乱してしまいます。そのため、「何を伝えたいか」に焦点を当てて資料を作成していきたいと思います。 発信方法の確認は? 具体的には、次のような行動を心掛けたいです。まず、伝えたい目的やメッセージを明確にし、その次に、どの順番で何を並べるかスライド全体の構成を考えます。そして、必要な文や適切なグラフを配置し、補足や強調は最低限に留めます。最後に、読み返しながら、伝えたいことが相手に無理なく伝わるかを確認します。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

クリティカルシンキング入門

問いから始まる新たな発見への旅

問いの必要性は? 問いを立てることの重要性を再認識しました。私の仕事を振り返ると、言語化して問いを立てることが不足していることに気付きました。問いの立て方によって考える方向性が大きく変わるのです。具体的に何が問題で解決すべきなのかを短期的な視点で捉えることが、効果的な問いやイシューにつながると感じました。ただし、長期的な視点での問いも重要ではありますが、それが本質論になると、足元の問題やミッションとずれてしまうこともあると実感しています。 報告方法はどう工夫する? 顧客に調査結果を報告する際、単なるデータの羅列では不十分であることを学びました。事実だけ述べると、自分が何を伝えたいのかが曖昧になり、お客様にとっても「だから何なのか」という疑問を生んでしまう可能性があります。お客様の業績や現状を考慮に入れて、調査結果から得られる価値ある情報を明確にし、具体的な問いを立てて伝える必要があります。 企業報告のポイントは? 企業ごとの報告内容を作成する際は、前回調査からの変化や企業の関心の高い論点を中心に状況をまとめます。これらの背景要因を分析し、状況を正確に把握した上で、具体的な問いを立てることが重要です。問いに対する回答を作成するためには、必要なデータベースを参照することも大切です。最終的には、プレゼンテーションに向けてストーリーを展開し、効果的に伝わるように文章を工夫しています。

クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

アカウンティング入門

会計で発見!企業の魅力

企業の収益と価値は? 知っている企業の主な収益源や提供価値、顧客像を複数人でディスカッションする中で、その企業や業界全体の特徴を意識することができました。特に、人件費がどのように企業の提供価値に影響を与え、損益計算書上で売上原価と販管費のどちらに計上されるかが異なる点は、とても興味深かったです。 業務と会計のつながりは? また、私自身が処理している業務が、最終的には会計の財務諸表の形成につながっていることを実感しました。正確な財務諸表を作成するためには、売上や原価の種別を正しく理解する必要があると感じています。これまで、社内ルールに沿って業務を進めていましたが、今後のビジネス環境の変化に対応するためにも、今回学んだ知識を基に経理や財務の担当者と相談しながら業務を進めていくことが不可欠だと考えています。そのため、自社のビジネスに対する理解と会計の基礎知識を一層深めていきたいと思います。 財務で業界を読む? さらに、自社の財務諸表を読みながら業界と自社の特徴を把握する重要性を改めて認識しました。日常の業務で財務諸表を直接扱う機会はあまりありませんが、今回の講義を通して、身近な企業の分析を習慣にすることが大切だと感じました。習得した知識を言語化するプロセスを繰り返すことで理解が深まり、この方法は新人教育にも活かしていけると確信しています。

データ・アナリティクス入門

ロジックツリーの本質と実務への応用

MECEの難しさと挑戦 MECEを意識しすぎるあまり、本質的なロジックツリーを作れていないことがあるのは、本当にその通りだと思いました。漏れなく整理するために「その他」を多用している自分を容易に想像でき、今回の講座内容は非常に自分事として受け止めることができました。 良質な示唆を得るには? MECEは重要ですが、あくまでフレームワークの一つであり、問題解決に繋がる良質な示唆を提供できる分け方が求められます。現状の自分の役割としては、営業戦略の策定と売上増加のための施策検討があり、常に課題解決に取り組む状況です。Week 01から学んでいる内容は、まさに今の業務に直結するものです。 定量的な分析を目指して WhatやWhereを置き去りにせず、現状の分析とありたい姿やあるべき姿をしっかり定義し、どこにギャップがあるのかを定量的に、そしてMECEに整理できるようにしたいです。前提となる「現状分析やありたい姿の定義」は、頭の中でわかった気で終わるのではなく、しっかりと言語化することを意識します。 フィードバックの活かし方 MECEのアプローチは、一人でアウトプットを出したうえで、同僚や上司からフィードバックをもらい、自分では気付けない「漏れやダブり」を見つけることが大切です。そのためのブラッシュアップを行い、練習を重ねていきたいと思います。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

戦略思考入門

顧客目線で差別化を進める新戦略

顧客目線はどう考える? 差別化を考える際には、まず顧客視点から捉えることが重要であると学びました。これには、実現可能性や競合が真似しにくいこと、そして持続性も考慮する必要があります。ワークを通じて、顧客目線での視点が不足しがちであったことに気づきました。具体的には、競合は必ずしも同じ業界に限らず、施策にかかるコストも無視できません。 自社の強みは何か? 私は現在、施設管理の業務に携わっていますが、これまで会社全体として自社の強みを言語化したことがありませんでした。このため、VRIO分析を用いて、会社全体および所属部門の強みを整理することにしました。また、同一業界で似たような事業を展開する企業は競合として認識していましたが、顧客視点で自社の競合を見直す必要があると感じました。そのため、競合が展開するサービスを分析し、自社の差別化や新規サービスの開発に役立てようとしています。 新戦略はどう描く? 現在展開しているサービスについて、完全に新しい打開策が求められる状況です。このため、顧客目線を重視した視点で、競合調査やサービス分析に取り組むことが急務です。来週には社員を集めて重点課題のアイデア出しを行う場を設けています。その前に、顧客が誰で、顧客目線で競合がどこにあるのかを明確にした資料を作成し、社員の共通認識を整えた上でアイデアを出す予定です。

戦略思考入門

異なる視点が生む成長の物語

個性の違いを感じる? 同じ職場で同じ業務に携わっていても、個々の考え方や向いている方向が異なることを学びました。異なる見解を否定するのではなく、別の視点を取り入れることでチーム全体の視野が広がり、より質の高いアウトプットが期待できると実感しています。 分析で全体を見直す? また、各種フレームワークを用いた分析を通して、事業全体や自分自身の業務を大局的に見直すことができると感じました。定期的にこれらの手法を実践することで、プロジェクト全体や自身の状況を整理し、効果的な改善・提案に結びつけたいと考えています。 共有で理解深める? さらに、普段当たり前と捉えている業務の内容も、言語化や図表化して共有することにより、チーム全体の目的意識を維持する手段になると確信しています。施策を提案する際には、フレームワークを活用して背景・根拠・想定される効果を明確にし、ストーリー性を持たせた説得力のあるアプローチを心がけたいと思います。 説得力の根拠は? チームメンバーとのコミュニケーションにおいては、分析結果を交えることで自身の主張に説得力が増すと感じています。業務推進においては、感覚だけに頼らず、3C分析やSWOT分析などを参考にしながら、合理的な判断とその決断が全体に与える影響を考慮することを意識していきたいと考えています。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

「分析 × 言語」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right