データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

クリティカルシンキング入門

思考を鍛えるための分けて考える技法

分かりやすい伝達方法とは? 物事は「分けて」考えることが重要です。思考すること、文章を書くこと、相手に伝える時の言語化、これら全てに手間をかけることが求められます。自分の思考の癖に気付き、常に自分自身に問いかけ、問いに対して懐疑的になることも忘れてはいけません。そして、伝える「相手」が存在することを意識する必要があります。学びを仲間にアウトプットすることも大切です。 認識齟齬を防ぐには? プロジェクトマネジメントにおいて、ステークホルダーに言葉を伝える際、相手の理解度は十人十色です。同じKPIを掲げていても、実際には人によって目的が異なることがよくあります。ミスの要因の一つは認識齟齬であり、全員が同じ思考回路を持っているわけではありません。だからこそ、リスク対策をしっかりと行いたいです。 会議の効果を最大化するには? 会議の目的を明確にし、参加者全員が同じ認識を持つプロセスを忘れないことが重要です。また、認識齟齬を防ぐため、資料の準備には力を入れ、図解を用いることも大切です。伝え方が杜撰であれば相手の理解度は下がるため、何事にもプロセスに手間をかける必要があります。また、プロジェクトのリスク分析を行う際は、相手のポジションや役割に応じて切り口を変え、複数のケースを想定しておくことが望まれます。

マーケティング入門

多角的な視点で拓くマーケティング

想定外の購買層は? 動画内で示された完全メシの主要な購買層が、自分が想定していたものとわずかに異なっていたことに気付きました。当初は20代~30代の男性をイメージしていましたが、ユーザーは多面的に存在するという事実を再認識する機会となりました。身近な事例を通じて購買者のペルソナを描くなど、複数の視点から自分の思考を見直す習慣を身につけたいと思いました。 マーケ思考の整理は? これまでマーケティングに関する業務は実践してきたものの、言語化して検討する機会はあまりありませんでした。今回、体系的に学ぶことで自身の頭の整理が進むとともに、今後の部下の指導にも大いに役立つと感じています。感性は個人で磨くしかありませんが、マーケティング視点の取り入れは誰にでも可能であるため、今後のチームの課題として積極的に取り入れていきたいと考えています。 企画評価の工夫は? また、企画を総評する際に、感性に基づく判断や好みが優先されがちであるという指摘について、現場から上がってきた企画の機能的価値と情緒的価値を分析し、伝えるためや売るために必要な要素を誰もが理解できる形で可視化・共有することが重要だと感じました。このアプローチを会議などでも取り入れることで、チームの総合力向上につながると期待しています。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

戦略思考入門

戦略思考×DXで未来を描く

戦略思考の価値は? 戦略思考とは、複雑な状況をできるだけシンプルに整理し、わかりやすく説明できる能力であると感じました。仕事に限らず、プライベートでもこの思考方法を取り入れることで、自然とその考え方が身につくのではないかと思います。 技術活用の意義は? また、参加者の方が紹介されていた、生成AIやDXツールを利用して「捨てる」理由を明確に示したり、シナリオプランニングの精度を高めるという事例は非常に印象的でした。私自身もこれらの方法を実践してみたいと感じています。 部署の役割を整理するには? 現在、私が担当している部署では、業務範囲が曖昧になりがちなため、部署本来の役割や業務内容を明確にし、具体的なアクションプランに落とし込む必要があります。そのため、プラン策定に向けて以下の点を進めたいと考えています。 今後の具体的な取り組みは? まず、これまでの成果と課題を整理するために、各担当者へのヒアリングを実施します。次に、他部署との役割の違いを明確にし、自部署に影響を与える外部環境や社内の変化についても分析します。そして、あるべき姿を明確に設定し、言語化することを目指します。最後に、部内の各チームごとに、それぞれの役割と取り組むべき課題を整理していきたいと思います。

戦略思考入門

フレームワークで見つける新たな視点

フレーム活用の効果は? フレームワークを活用することで、漏れなく効率的に検討を進められることを再認識しました。特に、フレームワークを皆で習得することで、メンバー間で共通の言語を使って会話ができる点が大きな利点だと思います。以前は3CやSWOT分析、バリューチェーン分析などの基本的な分析をしないままに戦略を立てようとしていました。しかし、まずは自分自身で実践し、手を動かして考えることが必要だと感じました。 情報不足の理由は? 3CやSWOT分析を行うためには、業界や他社の情報がまだ不足していると感じているため、これから地道に情報を収集していきます。一方、バリューチェーン分析に関しては、自分の所属する部署に限定して分析するのも良いかもしれないと考えました。このフレームワークは、どこに人材と資金を投入すべきか判断し、経営陣からの合意を得る際に非常に有効だと実感しました。 実践から何学ぶ? 具体的なアクションとしては、まず3CとSWOT分析を試してみて、空白部分を明らかにし、見えていない点や情報不足の箇所を洗い出します。また、自チームのバリューチェーンを描いて、同僚や上司と共有し、フィードバックをもらいながらブラッシュアップしていきたいと考えています。

デザイン思考入門

言語化で磨かれる提案の極意

課題を明確にできた? IRコンサルティング業務では、これまでお客様の課題を明確な言葉で定義していなかったため、今回学んだ手法を通じて、お客様の状況や課題を整理できたと感じています。また、カスタマージャーニーはBtoB事業においても十分に活用できると実感しており、早速試してみたいと思います。 実践はどう進む? 実践については、4週目以降に取り組む予定です。お客様の課題を言語化することで、認識のずれが減少し、提案の精度が向上すると考えています。同時に、BtoBにカスタマージャーニーを適用することで、意思決定プロセスが可視化され、より効果的なコンサルティングが期待できると感じました。 分析法は何が鍵? また、以下の点にも留意しながら進めます。まず、定性分析は仮説の立案を目的とし、定量分析はその仮説の検証を目的とします。定性分析では、コーディングによってデータを1次コードから3次コードへと分類し、体系的に整理します。さらに、ユーザーの暗黙知を把握するためには観察を、形式知を引き出すためにはインタビューを実施し、それぞれを適切に使い分けることが重要です。最後に、ペルソナを具体的に設定し、カスタマージャーニーを描くことで、実践的な分析を目指していきます。

戦略思考入門

点を超えて線を読む力

点と線の捉え方は? 全体を通して、各手法を単なる点として捉えるのではなく、線としてしっかりと分析し、それを次の分析へのインプットにしていくことが重要であると再認識しました。また、頭では理解していても、つい答えありきで進めてしまう癖があるため、有識者と共に、普段からどのような分析手法を用いているか、また答えありきになっていないかをクロスチェックする必要性を感じています。 計画と分析はどう調和? 特に来期の事業計画の立案時に、この分析の姿勢が非常に役立つと考えています。たとえ綿密に分析して計画を策定しても、現場の都合や関係性によって思いどおりに進まないことが多いのが現実です。しかし、自社のメリットを明確に言語化し、他者にも理解していただける分析を行う技術を身につけるため、日頃から学んだ手法を自然にアウトプットできるように心がけたいと思います。 外部インプットは必須? また、PEST分析などで社会情勢を捉えるには、個人だけでは限界があるため、外部からのインプットに頼ることも重要です。某IT企業のレポートなど、信頼性の高い資料を参考にする一方で、ほかにも有用なレポートがあれば共有していただけると、大変助かります。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

アカウンティング入門

アカウンティングで広がる新たな視点

アカウンティングの理解を深めるには? アカウンティングの重要性や、事業活動の意味、事業活動を定量化する指標について、今まで漠然と理解していたことがしっかりと言語化され、体系的に整理されました。これにより、頭の中にフレームが形成され、とてもすっきりとした気持ちです。このフレームに情報や知識を加え、自分の中で考えを整理していくのが非常に楽しみです。 自社のP/LとB/Sをどう活用する? まず、自社のP/LとB/Sを読み解けるようになり、俯瞰的な視点で自部署や他部署の事業活動を再考したいと考えています。その後、競合他社のP/LやB/Sを分析し、自社と比較することで、改善や成長のポイントを見つけたいです。 理解を深めるためのアプローチは? 本講座を通じて、すべての内容をしっかりと理解し、疑問点がない状態で修了したいと考えています。その上で、自社のデータを読み解く際に生じる不明点については、上司に相談したり、質問の機会を作りつつ理解を深めたいと思います。競合他社の分析に関しては、特定の企業をピックアップし、理解を深めたいです。また、アカウンティングに詳しい周りの方々に声をかけ、比較検討会の実施を提案したいと考えています。

データ・アナリティクス入門

分解で納得!問題解決の実践

課題の本質を探る? 問題解決には明確な手順が必要です。まず、直面した課題を正確に言語化し、現状とのギャップを明らかにすることが求められます。そのため、分析を始める前に、課題とギャップの埋め方についてしっかりとすり合わせ、合意を得ることが重要となります。 合意のポイントは? 合意を形成するためには、問題を漏れなくダブりなく分解し、論理的かつ視覚的に納得感が得られる形で提示する必要があります。たとえば、「劇場の売上の減少」という課題認識のもと、大枠では単価と客数に分解できますが、そこからさらにMECEな形で掘り下げ、時系列比較の中で最も影響が大きい部分を特定することが効果的です。 収束はどう図る? また、予実比較の検証のように議論が発散しやすい場合でも、一定の手順に従えば納得感のあるロジックで改善箇所に合意が得やすくなります。具体的には、直近1年分の売上データを活用し、MECEな形で分解作業を行うことで、現状の売上改善余地がある領域を根拠をもって説明できるようになります。 改善策はどう決定? 最終的に、関係者の合意を得た上で、特定した改善領域に対するアクションプランを立案し、提案することが求められます。

「分析 × 言語」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right