データ・アナリティクス入門

なぜ?が鍵!明確目標のデータ分析

比較って本当に必要? ナノ単科の講座を受講して、データ分析における比較の大切さや、目的を明確にする意識が身につきました。分析とは、単に数値を眺めるだけではなく、何を見せたいのかという目的を持って行うものだと感じました。 なぜ条件を揃える? 講座では、同じものを比較する際に条件を揃えることや、なんとなく行っていた作業を言語化して知識として整理する重要性について学びました。また、各手法を選ぶ理由に「なぜ」を問う習慣が、より精度の高い分析に繋がると実感しました。 分析をどう活かす? 顧客データを基にした採用分析や、改善施策の振り返り、マーケットの動向を踏まえた戦略策定など、具体的な課題特定のプロセスを通じて、分析の実務的な活用方法についても深く考えることができました。 理由は何だろう? さらに、普段の業務においても、ただ感覚に頼るのではなく「ここを見せたいからこのグラフを使う」「ここで比較するために条件を合わせる」といった、明確な理由付けを意識してデータを扱うことの重要性を再確認する機会となりました。

データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

マーケティング入門

付加価値創出で未来を拓く

付加価値はどう見極める? モノに単に対価を設定するのではなく、常に付加価値があるかを考える習慣が大切だと感じました。具体的な見せ方や利用シーンの提案を通じて、体験価値を創出することが売上向上につながると考えています。また、体験価値の定義に関しては大きな金銭コストがかからないため、積極的にアイディアを出していきたいです。 差別化はどう伝える? 価値提案を構築する際には、プロダクトの差別化と競争優位性を明確に伝えることが必要です。自社の商品が従来とは異なるターゲット層にも受け入れられる可能性や、これまで提案されていなかった利用シーンをどのように訴求できるかを、高い視座で分析し、まとめることを目指します。 強みと弱みはどう見る? さらに、フレームワークを活用して自社の強みと弱みを網羅的に把握することが重要です。自身だけでなく、同僚のフィードバックを取り入れながら、抽出した強みと弱みをもとに、これまでにない体験価値や利用シーンを具体的に言語化していきたいと考えています。

戦略思考入門

競合を超える!戦略と分析の新発見

ターゲットと競合の意義は? 差別化戦略を考える上で、改めて「ターゲット顧客」と「顧客視点の競合」の重要性を認識しました。競合にばかり目を向けると、自社の本質を見失うことがあります。そこで、VRIO分析などのフレームワークを活用し、戦略立案や競合の把握に役立てることが重要です。 戦略実行の鍵は何? 経営層が策定した戦略を実行する場面が多くありますが、今学んだフレームワークを活用することで、戦略への理解を深めることができます。また、自分が収集したデータを効果的に活用し、それを他のメンバーに共有することで、組織全体を正しい方向に導く努力をしています。 業務で差をつける方法は? 具体的には、自分が担当する業務内で顧客と競合を見直し、現在の設定と比較して違いを見つけ出します。市場の変化を感じるだけでなく、フレームワークを用いて言語化し、その分析結果を組織へフィードバックしていきます。この考え方や動きを他のメンバーにも広げていくことを心掛けています。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

アカウンティング入門

企業の本質を見抜くための戦略と実践

企業のビジネスモデルを理解するには? ビジネスモデルを理解し、それを基に数値を読むことで、その企業が大切にしていることが見えてくる。企業が何を重視しているのか、どのようなビジネスモデルを持っているのかに興味を持って観察することが重要だ。頭では理解できるようになってきたので、今のうちに実践に移していきたい。 自社と競合分析の重要性は? まずは、自社の分析や競合の分析、さらにはクライアント企業など、幅広く読み解いてみる。また、新規事業の検討や、既存の事業部の採算を粗利だけでなく、細かく見ることが必要かもしれない。 学習環境をどう整えるか? 〆切や目的が不明確では手がつかないため、そのような環境を自ら作り、やらざるを得ない状況に自分を置くことが求められる。この講座のおかげで身につきつつある学習習慣を、週末の午前中に活かしていく。学習は、インプットとアウトプット、言語化、他者との学びが大切であることを実感している。

戦略思考入門

ターゲット力で差をつける戦略術

ターゲットは誰? ターゲット顧客の明確化は、差別化戦略を構築する上で非常に重要だと感じました。どの顧客層に注力するのかをはっきりさせることで、何を行い何を行わないかといった戦略の基盤が固まります。また、外部環境を把握するためのPEST分析や、内部資源を評価するためのVRIO分析といった手法を組み合わせることで、自社の強みを活かした戦略立案ができると実感しました。 模倣と組織はどう見る? さらに、VRIO分析においては特に模倣困難性と組織的観点に注目することが重要です。他社にはない自社独自のリソース、たとえば蓄積された暗黙知や歴史、文化などを言語化し整理することで、企業としてのユニークな価値が際立つと考えます。また、ポジショニング理論とRBVの視点を併せ持つことで、コストリーダーシップなど自社の立ち位置を多角的に見直し、戦略を更に強化することが可能になると思います。

クリティカルシンキング入門

視野を変える!クリティカル体験

論理整理のコツは? これまでの講義ではクリティカルシンキングの基礎知識を学びましたが、実際に具体的な問題に直面すると、論理の整理すべき順序を忘れがちになることに気が付きました。 瞬時思考の秘訣は? 知識として身に着けることも大切ですが、ディスカッションの場では、瞬時に思考を巡らせ、言語化できる能力が求められると感じました。そして、今回のケーススタディによる学習は、クリティカルシンキングを実践する上で非常に有益であると実感しています。 分析視座はどう変わる? また、これまで組織の問題を解決するためには、自社や業界の知識が不可欠だと考えていました。しかし、今回の講義を通じて、現状を分析する際に視座を変えることが、より効果的な解決策にたどり着くための鍵であると気づかされました。今後は、常に広い視野を意識しながら問題解決に取り組んでいきたいと思います。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

戦略思考入門

論理で明かす経済性の秘密

規模の経済性をどう捉える? ゲイルで学んだ規模の経済性と習熟効果は、これまで感覚的に感じていたことが論理的に整理され、非常に印象に残りました。また、バリューチェーンと範囲の経済性についても、自社の資源を他の事業で活用する際に、新規事業検討のための自社分析や市場環境の把握が重要であると再確認できました。 新戦略のヒントは何? ウェブサイト運営で新しいコンテンツを検討する中、これまで感覚に頼っていた部分を、今回学んだ独自性、模倣困難性、そして顧客に対する価値拡大の視点を取り入れることで、より具体的かつ戦略的なアプローチが可能になりそうです。 理論で見つけた気づきは? また、ビジネス経験を理論化し言語化することで、新たな気づきを得られたことが大変有益でした。

データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。

「分析 × 言語」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right