戦略思考入門

フレームワーク活用の楽しさと難しさ発見

フレームワークってどう活かす? これまでの学習を通じてフレームワークの内容は理解したつもりでしたが、それを実践に移す難しさを感じました。総合演習では与えられた状況を分析する際、どのようにフレームワークを活用すれば良いのかを整理するのに時間がかかりました。こうした経験から、まずはフレームワークに落とし込んで見える化することの重要性を実感しました。また、「仮説設定と仮説検証」を繰り返して考えることの重要性にも気づきました。物事を分析し、ある結論に導くためには多くの情報の中から必要な情報を選び出し、仮説として組み立てる必要があります。そのためには、大胆に考えた後、仮説検証を十分に行うことが求められると感じました。 教育企画はどう進める? 現在担当している教育体系の企画業務においては、無暗に研修手段の情報を収集して選定するのではなく、自社の環境や課題をまず分析し、必要な施策を検討することの重要性を感じています。また、教育関連の企画においては仮説設定に重きを置く傾向があるため、実施の前に事業本部にヒアリングを行うなどして、仮説検証を十分に行う必要があると考えています。 分析で信頼を築ける? 自社分析や外部環境分析の際、SWOT分析やPEST分析といったフレームワークを活用することで、上司や他の人々にも納得しやすい提案ができると感じました。今後もフレームワークの活用を実践していきたいと考えていますが、フレームワークを使うこと自体が目的にならないよう注意し、企画の根本的な目的を忘れず、無理にきれいにまとめようとしないことも心がけたいと思います。

戦略思考入門

普段の判断に戦略のヒント

戦略背後の分析は? ワンイシューに流されるのではなく、戦略の背後にある分析内容をしっかり確認することが大切だと感じています。戦略を自ら立てる際、たとえ分析を行ったとしても、普段は経験則に基づいた判断を重視していたことを改めて実感しました。 経営と現場の視点は? 経営者の視点で考えることは、自身の事業だけではなく、会社全体の利害を見据えるという意味で非常に重要です。しかし、実際にはその実現が難しいシーンも少なくありません。戦略を策定する際には、どの方向に向かうのか、視野が狭くなっていないかをまず意識する必要があります。明確に事業計画を立てる場面では効果的ですが、日常の小さな判断においても戦略的思考を自然に取り入れる努力が求められます。 分析に偏りは? また、戦略の分析にフレームワークを用いると、つい「答えが存在する」という前提で都合の良い分析に偏りがちです。本当に公平な視点で分析を行うには、どのような方法が有効なのか、改めて考える必要があると感じます。 不利な判断の覚悟は? さらに、経営者の視点での分析は重要だと理解しているものの、時には自分の部署にとって不利な判断、例えば縮小や評価の低下を伝えなければならないこともあります。部署の成果を重視すれば、モチベーションは上がるかもしれませんが、規模縮小などの判断はメンバーの業績評価に影響を及ぼし、ネガティブな結果を招くことも考えられます。経営判断であれば周囲も納得するかもしれませんが、現場でそのような判断を行うには、相当な覚悟とパワーが要求されると感じています。

データ・アナリティクス入門

多角的発想で拓く学びの扉

仮説の立て方は? 仮説を立てる際には、複数の仮説を提示し、網羅性を意識することが大切です。3Cや4Pといったフレームワークを活用すると、仮説を立てやすくなることを実感しました。また、単に考えただけでなく、様々な切り口からアプローチするよう努めることが重要だと感じました。 データ選びはどう? データ収集については、誰にどのように聞くかが非常に大切です。自分に都合の良いデータだけでなく、反対の意見となる情報も収集するよう心掛けています。一見、目の前にある情報だけで判断せず、目的に沿ったデータであるかどうかを考える重要性を改めて感じました。実際、抽出したデータで本当に検証したい内容が導き出せるかを、常に見直す必要があると考えています。 サービスはどう伝わる? 新しい運用やシステムの活用状況、また提供しているサービスがどのようにお客様に届いているかを分析する際は、まず言葉で仮説を立てることに取り組んでいます。これまで、数値を見ただけで直感的に考え、その立証に必要なデータをどう抽出するか検討していましたが、目的に合致しているのか不安に感じることもありました。そのため、自分にとって都合の良いデータだけに偏らないよう、改めて意識しています。 生産性向上はどう? また、社内の生産性向上施策が実際に効果を上げているかを検証する際にも、フレームワークを用いて複数の仮説を立て、網羅的に検討することを意識しています。抽出したデータが目的に沿っているかを確認した上で、そこからどのような結論が導けるのかをしっかり検証することが重要だと感じました。

データ・アナリティクス入門

仮説思考で広がる研修の未来

仮説の意味とは? 仮説とは、問題解決や意思決定の基盤となる論点に対する仮の答えであると再認識しました。学習を通じて、仮説には「結論に対する仮説」と「問題解決の仮説」の2種類があることを理解し、特に後者では「Where:問題の所在」「Why:原因」「How:解決策」という3つの視点が重要であると学びました。また、仮説を立てる際には網羅性を意識し、3C(顧客・競合・自社)や4P(製品・価格・流通・プロモーション)などのフレームワークを活用することで、抜け漏れを防ぎ、実行可能な仮説を構築できる点が非常に有用だと感じました。 学びをどう生かす? 今回の学びは、特に新たな研修企画の立案において活かせると考えています。たとえば、受講者が抱える課題や、その解決に向けた最適な研修プログラムを検討する際、これまでの既存の枠組みを超え、より広い視点で仮説を立てることが求められます。3Cを用いて受講者のニーズや組織の目標、そして競合の研修内容を分析することで、より具体的で効果的なカリキュラム設計が可能になるのではないかと思います。 次の研修はどうする? 今後の研修企画では、まず研修の目的と受講者が抱える課題を明確にし、初期段階から3Cや4Pなどのフレームワークを活用して網羅的な仮説設定を行います。また、企画の途中で目的から逸れていないか、あるいは目的自体に誤りがないかを定期的に再検証するプロセスを取り入れる予定です。さらに、既存の研修内容につきましても、この手法を用いて見直しを行い、より精度の高い研修企画の実現に努めたいと考えています。

アカウンティング入門

数字の裏側に隠された学び

売上と営業利益はどう? 売上高は企業の事業規模を示す指標であり、数字が大きいほど事業の規模が広いと理解できます。また、営業利益までの項目は本業における収益と費用を反映しており、本業でどれだけの利益を上げているかを把握できることがわかります。 経常利益はどう捉える? 経常利益は、主に財務活動に起因する本業外の収益や費用を含み、継続的な利益獲得の見込みを判断するための重要な指標となります。それ以降の項目では、税金等調整前当期純利益、当期純利益、親会社株主に帰属する当期純利益といった形で、最終的な利益状況が表現されています。 P/Lの見方は? P/Lを読み解く際には、まず売上高、営業利益、経常利益、当期純利益といった大きな数字に注目し、事業全体の概況を把握することが基本です。さらに、各項目の推移や数値の比較・対比を行うことで、傾向の変化や大きな相違点を見出すことが重要です。 競合との違いは? 現在のプロジェクトでは、競合他社と自社との比較・対比分析にP/Lを活用したいと考えています。特に、競合の過去数年にわたるPLの傾向を分析し、どの項目に費用をかけて利益を生み出しているかを抽出することで、自社との違いを明確にしたいと考えています。 効率はどう高める? また、5月末に予定している社内プロジェクトの中間報告会に向け、Q2の情報を盛り込んだ報告内容を準備中です。このため、分析は自分一人で進めるのではなく、ChatGPTやCopilotといったツールを活用し、業務効率を高めながら取り組む方法を模索しています。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

アカウンティング入門

利益の真実に迫るP/L分析の魅力

利益はどう見える? 儲かっているかどうかを判断する際、P/Lのどこを見ればいいのかが理解できました。特に、事業のコンセプト通りに利益を上げられているかを評価する際には、営業利益に注目するとよいと思います。P/Lの各利益項目を見ることで、安定的な利益なのか、突発的なものなのかを判断しやすくなりました。 薄利多売の工夫は? 例えば、今回のケーススタディとは反対に、薄利多売のビジネスモデルの場合は、販売管理費の削減や粗利をどれだけ残せるかといったコスト意識が特に重要になります。粗利や営業利益、経常利益、税引前当期純利益のそれぞれの意味合いについても理解が深まりました。 過去どう振り返る? 特に役立ったポイントとして、自社のP/Lを確認し、目標とする利益が事業のコンセプトと整合性があるかを確認すること。そして過去のP/Lを振り返り、近年の変化を把握して、市況環境と事業成績を想像してみることです。また、P/Lを見て各会社の稼ぎ頭やその逆を確認することも有益です。経常利益が特に高い、または低い時には、その背景にどんな要因があるのかを調べることも重要です。 数字と実感は? 次に、金額を割合に置き換えて考えることや、事業のイメージとP/Lの内容が一致しているかを確認することが重要です。新聞やニュースで○○利益が過去最高と報じられた際には、他の利益も確認すると新たな洞察が得られることがあります。さらに、前期の投資が今期または将来的にどのように働くのか、その影響が営業利益として見返りを出しているかに注意を払い続けることも求められます。

データ・アナリティクス入門

実例でひも解く市場戦略のヒント

市場分析はどうする? 市場分析においては、従来の市場重視だけでなく、3Cおよび4P分析の重要性を実感しました。特に、競合の存在に対する意識が不足していた点を改める必要があると感じています。また、プロモーション戦略については、各校舎ごとに異なる方式を採用すべきだと納得しました。 データ収集はどう? データ収集に関しては、まず公開されているデータを積極的に探すことが基本であると再認識しました。官公庁のサイト、新聞、経済誌など、どのようなデータが存在するかを日常的に意識することが大切です。 現状認識はどう? まずは現状を確認し、当たり前のことでもしっかりと言語化することで、チーム全体で共通認識を持つことが重要です。その上で、原因となる事象を特定し、具体的な解決策の検討に取り組む流れが効果的であると感じました。 仮説検証は? さらに、仮説を立てた上でユーザーアンケートをデザインする際は、因数分解やクロス集計が可能な形を意識することが求められます。フレームワークを活用し、実際に分析とその言語化を進めることで、より具体的な解決策に近づけると考えます。 チーム共有は? また、アンケートデザインにおいては、チーム内で考え方や方針を共有し、どのような分析が可能か、そして実際にどのようなレポートを作成するかを仮で作成して検証するプロセスが重要です。望ましい状態と現状を整理し、効果的なフレームワークを見つけて習得すること、さらにはその内容を資料にまとめ、教えられるようにすることも大切だと実感しました。

データ・アナリティクス入門

データ分析で未来を読む: 大学教育の向上指南

データ分析で重要なのは何か? データ分析を行う際には、事実(ファクト)に基づくことはもちろん重要ですが、比較の視点も非常に重要だと学びました。また、見えている事実から見えない事実を推測し考察することも大切です。 分析目的をどう設定する? データ分析の目的を最初にじっくり考えることが重要だと感じました。目的が明確であるならば、そのための準備や材料となるデータも自ずと見えてきます。 上記の内容を自分でしっかり把握した上で、上司や部下に理解してもらうためにどのようにデータを見せるか、プレゼンの仕方も重要です。 大学データをどう活用する? 私は大学に勤務しているため、大学内のさまざまなデータを分析に活用したいと考えています。具体的には、以下のテーマに取り組みたいです: - 入試成績と入学後の成績(GPA)の相関分析 - 入学後の学生生活と卒業時アンケート回答(大学に対する満足度)の相関 - 上記が国籍によってどのような差異があるか - これらのデータをもとに、大学全体として学生に提供する教育やサービスをどう向上させるか 学生の実態をどう把握する? 一例として、学生生活と満足度の相関を探るために、現在の資料を見直し、学生生活の実態を把握するための質問や指標、卒業時のアンケート内容をより充実させたいと考えています。現在のデータをより細かく見ることで、職員である私たちにも見えていない学生の実態があるのではないかと考えています。 さらに、「比較が大事」という視点を持ち、他大学の情報も参考にしたいと考えています。

マーケティング入門

多角視点で開く学びの扉

マーケはどう捉える? マーケティングの定義は人それぞれの捉え方があり、どの考え方も広い意味でのマーケティングに含まれることを学びました。思考や仕組み、プロセス全体が一体となっているということを再認識し、異なる視点が必ずしも間違いではないという気づきも得ました。自分の商品だけでなく、顧客にその魅力を伝えるサイクルを確立し、最終的に顧客に選ばれる重要性を強く感じました。自分自身、もっと執念深く取り組む必要があると実感しています。 ブランドはなぜ必要? 現在の業務は技術を起点としたプロダクトづくりが中心ですが、顧客にそのプロダクトの魅力をしっかりと伝えるためには、ブランドづくりが不可欠だと考えています。魅力を感じてもらえるターゲットが存在するのか、販売の仕組みが適切かどうかを継続的に分析していくことが必要です。常に自分の考えが正しいか、適切かを問い直す姿勢が求められており、顧客のニーズに合致するかを判断するためのマーケティング的視点の習得と活用が今後の課題だと感じています。 顧客理解はどう進む? まずは、顧客が本当に求めるものを理解し、顧客の思考や行動を分析することから始めたいと考えています。コアファンの探索を通じて、その行動原理や商品の用途を再確認し、ユーザーストーリーマップを作成する予定です。また、顧客インタビューに際しては、対象者にブレがないか、質問内容が適切かどうかを十分に検討した上で実施します。仮説検証の際にも、一方的な判断に偏らないよう論点を整理し、ビジネスの勝ち筋を見出す努力を続けたいと思います。

データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

「分析 × 内容」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right