デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

データ・アナリティクス入門

ロジックで紐解く成長のヒント

問題をどう洗い出す? 今回の学習では、まず何が問題であるかを洗い出し、その問題箇所を明確にすることの重要性を学びました。問題の原因を詳しく分析し、対策を検討・実行するプロセスや、結果から各要因を考察する点、さらに理想と現状のギャップを埋めるための工夫が大切であると実感しました。 分析手法は何か? また、分析手法としてロジックツリーやMECE分析、さらに階層分析と変数分析の活用が有効であることを学びました。これらの手法を用いることで、データの整理がしやすくなり、効率的な分析が実現できると感じます。 実例で何を発見する? 具体例として、交通系ICカードの決済データを利用し、加盟店やキャンペーンごとの売上分析に応用できる可能性があると考えました。売上分析においては、年代、性別、居住地、曜日などの視点で検証し、来店回数や決済金額の傾向も踏まえて全体的な分析に役立てたいと思います。 量と質のバランスは? 最初の段階では、質よりも量を意識して経験値を積むことが重要と考えています。質も適度に保ちながら、実践を重ね、ロジックツリーやMECE分析を積極的に活用してデータ分析に取り組んでいきたいと思います。

クリティカルシンキング入門

クリティカルシンキングで提案力が向上!

どちらの手法が最適? 物事を考える際には、帰納法と演繹法というアプローチがあります。この両方を使いこなすことで、片方のみを利用する場合に比べて、より良い結果を得られると感じました。 視点はどれが効果的? ロジックツリーを描きながら、具体と抽象の視点や鳥の眼、虫の眼、さらには主観と客観を何度も行き来して思考することが重要だと捉えています。 提案の質はどう向上? 日々の顧客への提案を作り込む際に、意識的にクリティカルシンキングを取り入れることで、提案の質を向上させることができそうです。そして、クリティカルシンキングによって、的外れな提案を大幅に減らせる可能性があると考えました。 実践で何を修正? 早速、日々の提案や企画業務にクリティカルシンキングを実践的に取り入れることにしました。今日の商談資料を見直した際に、修正が必要な点を発見しました。 コミュニケーション改善は? 加えて、プライベートでも他者とのコミュニケーションにおいて、意識的にクリティカルシンキングを取り入れていくつもりです。これが無意識にできるレベルまで定着させることを目指したいと思います。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

戦略思考入門

福祉現場で感じる経済の本質

規模の効果は理解できる? 規模の経済性について、私の職場は福祉系でサービスの販売を行っていないため、固定費は主に人件費や電気・水道料金に充てられ、変動費は支援に使用するわずかな材料費に相当します。生産量の増加による1個当たりのコスト低減は、通常の製造業とは異なる面があります。 習熟効果は実感できる? 習熟効果に関しては、各職員の累積経験やスキルの蓄積が大きな役割を果たしています。業務を重ね、得た知見を共有することで、効率が向上し、より質の高い支援が実現され、結果として利用者の拡大にも繋がっています。 範囲拡大は有効か? 範囲の経済性においては、当職場には多くの資格保有者がいるため、現行の支援業務に留まらず、個別領域の拡大や新たなプログラムの導入も検討の対象となっています。既存の資源をさまざまな形で活用することで、効率的な運営が期待できます。 ネットワーク整備は可能? 一方、ネットワークの経済性については、現状、業務を推進する上で必要なスキルを持つ人材が不足しているため、優先順位の見直しや既存スキルの活用、さらには採用活動の強化が求められています。

デザイン思考入門

実体験で見える本当の価値

Zoomでは何が伝わらない? プロトタイプを発表した際、Zoomを用いた発表では実際に体感してもらうことが難しかったと感じました。たとえば、バックパックは実際に人が背負って使うものであり、実物を体験しながらその感想を伝えることが、より良いフィードバックにつながるのではないかと思います。 自ら試す意義は? また、体感することの重要性は、他の事例にも応用可能だと感じました。私が行政の職員として携わっている電子行政手続きにおいても、まずは手続きのプロトタイプを作成し、自分で実際に操作してみることが必要です。そして、同僚だけでなく、初めて利用する市民にもテストしてもらうことで、多角的なフィードバックを得ることができると考えます。 実践的テストはどう進む? 具体的には、まず自らツールを用いて手続きを作成し、そのテストを実施します。次に、同じ部署や他部署の職員によるテストを経て、最終的に実際に行政手続きを利用する市民にテストを実施してもらう流れが理想的です。実際、窓口部署でこれまで多くの行政手続きを作り上げた経験から、実践的なテストは十分に可能だと確信しています。

マーケティング入門

多角的視点で見つけた認知のヒント

マーケティングの意味はどう? マーケティングを一つの考え方として押し付けるのではなく、その場その場に適した多様な視点を前提にし、適切な定義のもとで課題解決に取り組むアプローチは、とても意義深いと感じました。ただし、単なるプロモーションと捉えている企業においては、広い意味でのマーケティング活動に別の名称を与える必要があるのではないかと思います。 利用者の生活はどう? また、自分が提供するブログやWebツールを必要とする人々がどのようなライフスタイルを送り、どのようなメディアに触れているのか、さらにはどのようなアプローチで認知してもらえるのかを考えることが重要だと感じています。そうした人々が何を求めているのかを明確にすることで、より効果的な情報発信が可能になると思います。 認知向上の方法は? 加えて、顧客が求める製品やサービスは分かりやすいものの、多くの製品やサービスが、その存在を必要とする人々に十分に認知されていない現状があります。膨大な広告予算に頼ることなく、どのようにして認知度を向上させるかについて、より経験豊富な方々の意見を聞いてみたいと思いました。

データ・アナリティクス入門

営業予測を刷新する新アプローチ

フレームワークの効果的な活用法とは? 今回の学びの中で、フレームワークのツールとしてロジックツリーとMECEが紹介されました。ロジックツリーは課題を細分化し、発見しやすくするための手法であり、MECEは問題をもれなく、ダブりなく整理するために必要な概念です。それぞれは様々な場面での分析に利用されますが、今回の復習を通じて今後の活用に向けた理解を深める機会となりました。 営業予測の新アプローチを試すには? 営業予測を行う際には、これまで直感に頼った予測を立ててしまいがちでしたが、今後は課題を分類し、分析した上で予測を立てることを心掛けたいと考えています。この新しいアプローチにより、異なる視点での分析が可能となり、より精度の高い営業予測が期待されます。 MECEを使った分析で得られるものは? これまでは同じ視点でデータを取り出して分析を行っていましたが、今後は課題を洗い直し、顧客の職種や規模、場所など、さまざまな角度からMECEを意識した分析を進めていきます。これにより、売り上げを伸ばすための施策のヒントを得られ、より具体的な情報収集と活用が期待されます。

「利用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right