データ・アナリティクス入門

振り返りが生む未来の一歩

問題発生の理由は? 問題が起きた際には、何が問題でどこで起きているのかを順序立てて考える必要性を改めて実感しました。問題を一方的に決めつけ、頭の中だけで解決策をブレインストーミングしても、生産性の高い解決策には結びつかないと感じています。 売上目標の突破は? 売上目標をいつまでにどこまで伸ばすかという課題に常に直面している中で、担当先ごとの「あるべき姿」や「ありたい姿」を考え、現状とのギャップを整理しています。TG顧客の特定や製品価値の十分な伝達について、MECEの視点で問題を洗い出し、短期間での対応が必要なものと一定期間をかけるものに分け、各アプローチを検討しています。これらを定量的に把握することで、説得力のある対策が実現できると確信し、短期間でPDCAサイクルを回しながら自分の行動を検証し、精度を高める重要性を学びました。 現状改善の策は? 担当先においては、あるべき姿やありたい姿を明確に定義し、現状との差を数値で捉えることで現実的な対策を構築しています。あるべきマーケットシェアに到達するために、どこを重点的に攻略するのか、どれだけの顧客に製品価値を理解してもらい、利用していただく必要があるのかを定量的に示すことで、実現可能な戦略となると考えています。また、毎週の振り返りを通じて、翌週には具体的な行動の改善を図っていきたいと思います。

データ・アナリティクス入門

ロジックで変える!問題解決のヒント

要素を分解する理由は? 要素を細かく分解して考えることの重要性を実感しています。ロジックツリーやMECEを用いることで問題解決に導く考え方は知っていましたが、実際の業務で活用する機会はほとんどありませんでした。しかし、例えば売上不足の原因分析において、感覚的な判断のみで進めると、実は客単価に問題があるにもかかわらず、売上数の伸び悩みにだけ着目してしまい、重要な視点を見落とす可能性があることを改めて認識しました。 良い切り口はどこに? また、悪い面ばかりに目が行きがちですが、良い切り口も取り入れることで全体の傾向が見え、適切な対策を講じやすくなると感じます。たとえば、自社で提供しているクラウドサービスの解約要因やアップセルの要因を分析する際は、業界、契約ユーザー数、利用部門、契約年数、ログイン回数などを軸に、理想と実際のギャップをMECEの視点で整理することが有用だと思います。 問題の整理はどうする? 今後、業務上で何かを分析する必要が生じた際には、まず直面している状況を具体的に整理し、問題(What)を明確に定めることが大切だと感じています。その上で、問題がどこにあるのか(Where)、原因は何か(Why)、そして解決策はどうあるべきか(How)をロジックツリーを用いて整理することで、問題解決の思考を習慣化していきたいと考えています。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

実践力が輝く!学びの現場改革

3Cの分析方法は? 3Cは、事業環境を多面的に捉えるためのフレームワークです。Customer(市場・顧客)、Competitor(競合)、Company(自社)の3つの視点から状況を分析し、事業戦略を立案する際の参考にします。 4Pで何を判断? 一方、4Pは3Cの自社部分をより詳細に検討するためのツールとなります。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)の4つの要素を軸に、どのようにサービスの良さを顧客に訴求するかを分析するために活用されます。 現場の課題は? 観光客にとっては、免税手続きの所要時間が短い中で対面式のアンケートや、時間を要するインタビューは取り組みにくい方法と言えるでしょう。また、クレームが発生した際には、最低でも1名の通訳が苦情対応のため常駐しなければならず、現場では実質的に人員が減る状況となります。 改善策はどうする? これまでのアンケート調査は一度のみ実施しており、対面で紙に選択肢を記入していただく方法にはお客様に抵抗があると感じました。今後はデジタル形式で「後ほど実施していただいても構いません」と伝え、アンケートに協力していただいた方々には次回利用可能なショッピングクーポンを提供することで、対応の改善を図ろうと考えています。

デザイン思考入門

大局と小さな一歩が未来を創る

デザイン思考は何が目的? デザイン思考とは、目標達成のための有効なツールの一つです。どのようなツールが存在し、どのように活用できるかを並べながら、目標に向かう具体的な手順やステップを考え、実行していくプロセスです。 課題発見はどう行う? まず、問題がどこに存在するのかを見える化し、自分の思い描くものではなく、相手が求める価値をしっかりとデザインし、提案することが大切です。問題から生み出されるニーズにフォーカスすることで、デザイン思考を用いて到達点の明確化と、その実現に向けた小さなステップを計画することが可能となります。 全体像は見えてる? また、目の前の小さなステップや個人のやりたいことに固執せず、全体像を俯瞰した視点で取り組む姿勢が求められます。大局を見失わず、一歩一歩着実に進んでいくことが、目標達成への近道となります。 ニーズ調査の意義は? さらに、丁寧なニーズ調査を行うことで、利用者や市民の実際のニーズを具体的に把握し、そのニーズに合った到達点を思い描くことができます。 協働モデルはどう? たとえば、関係者と共に新たな地域交通モデルの構築に取り組む場合、まずは関係する各方面の現状やニーズを共有し、どの方向を目指すべきか、全員でモデル像を具体的に描いていくことが重要となります。

デザイン思考入門

プロトタイプで未来を変える

録画での学びは? 参加できなかったため、録画で学びました。その中で「バックパックを作る」という課題について、実践を通して単に改良方法を考えるだけでなく、既存の考えにとらわれない発想の大切さを実感しました。 利用者の意見は? また、テストを実施することで、自分にはない視点を利用者からフィードバックしてもらえるという気づきがありました。特に生成AIの活用という視点は非常に参考になり、早速利用してみたいと感じました。 プロトタイプで変化は? 一番の気づきは、どうしても主観になりがちな点を、デザイン思考のプロセスに従ってプロトタイプを作成することで、ユーザー(メンバー)からのフィードバックを得られ、新たな視点が生まれるということです。現行の業務ルーチンに対しても、当たり前のプロセスに疑問を持ち、変革する際にはメンバーや有識者にプロトタイプを提示し、違った見方を取り入れる可能性があると考えました。 改善の進め方は? 業務プロセスやツールの改善においても、手順を踏んでプロトタイプを作成することの重要性を実感しました。時間がないと思いがちですが、改善サイクルを迅速に回すことが大切だと気付かされました。自分はツールの作成・改善にとっつきやすいため、まずはその点から実行してみたいです。

データ・アナリティクス入門

ロジカル思考で未来を創る

仮説を深掘りするには? 視野を広げて仮説を考えるために、3Cや4P、SWOT、5W1Hなどのフレームワークを活用するという視点は、自分にとって盲点でした。普段は頭の中で拡散的に物事を捉えがちですが、MECEに沿った論理的な整理ができるこれらの型を使うことで、抜け落としていた観点を補うことができると実感しました。 データの活用法は? また、データの取得方法についても、新たにアンケートなどで新しいデータを取ることに注力しがちでしたが、既存のデータを活用する手段もすぐに実践可能であることに気づかされました。特に、パートナーが所持しているデータに着目するという考えは、近くにある資源を有効に利用する良いきっかけとなりました。私自身、所属するグループ全体でリソースを活用することの重要性を改めて認識しています。 問題解決の手順は? さらに、問題解決のステップとして「原因の特定」を意識してきた中で、WHAT→WHERE→WHY→HOWという一連の流れは、非常にわかりやすく、汎用性が高いと感じました。これまで以上に構造的な思考を促すツールとして、エクセルにフォーマット化したフレームワークをデスクトップに置き、仮説を立てるたびに都度活用していきたいと思います。

マーケティング入門

受講生が語る業務改革の秘密

イノベーション普及の理由は? 今回の学びでは、イノベーションが普及するための要因について理解を深めました。具体的には、従来のアイデアや技術に対する比較優位性、生活環境に無理なく馴染む適合性、利用者にとって理解しやすいわかりやすさが重要であると感じました。また、実際に試すことができる試用可能性や、採用されていることが周囲に明示される可視性も大きな要因だと実感しました。 バックオフィス業務効率は? 現在の主たる業務は、バックオフィス業務の効率化と品質向上に注力しています。実際、実店舗や間接部門との連携においては、全社的な業務変革に対する抵抗感がある中、わかりやすさや適合性、試用可能性を意識したコミュニケーションが、業務の円滑な遂行に直結していると感じています。 部署移管の説明は? また、既存業務を自部署へ移管する際には、新しい書式や使用方法についての説明が多く求められます。決まりごとや全社的な流れを伝えるだけでなく、相手が理解し納得するまで丁寧に説明責任を果たすことが、信頼関係の構築に不可欠だと再認識しました。 顧客志向はどうする? 今後は、顧客志向の目線を重視し、相手が把握しやすい資料作成や説明会の実施に努めたいと考えています。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

「利用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right