データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

クリティカルシンキング入門

読み手を惹きつける資料作りの秘訣

スライド作成の極意とは? スライドを作成する際、読み手が情報をどの順番で受け取るかを意識することが、意図した内容をより効果的に伝える鍵であると学びました。また、強調したい部分に合わせた色使いやフォントの工夫が、ポイントのハイライトに役立つことを実感しました。 資料作りはどう変わる? これらの知見は、プレゼンテーションスライドだけでなく、普段利用しているメールや文書共有ソフトを使った資料作りにも応用できると感じています。 説明資料の秘訣は? 説明資料を作成する際は、まず伝えたい内容を明確にすることが重要です。以前の学習でも、理由を裏付ける根拠を整理し、情報をどの順番で伝えると理解されやすいかを考える手法が紹介されており、非常に参考になりました。特にハイライトしたい部分については、体裁にこだわることで、より効果的な伝達が可能になると理解しました。

クリティカルシンキング入門

実務で活きる!効果的な問いの立て方

初動で何を押さえる? 取り組むべき問いについて、最初の一歩からずれてしまうと、異なる論点へ進んでしまう可能性があります。したがって、組織やチーム全体で方向性を共有することが非常に重要だと感じました。イシューを特定するためには、問いを明確にし、具体的に考え、一貫して押さえ続けることが大切です。 採用手法の見直しは? 実務においては、新卒採用や中途採用の手法について検討する際、キャリアフェアの動員数を増やすことだけに固執せず、イシューがどこにあるのか、そして他に利用できるチャネルを探求していく視点が重要だと学びました。 採用効率向上の方法は? はじめに、どのような手法が考えられるのかリサーチし、それを書き出してみます。そして、ターゲット層を分析し、具体的にどのような行動が採用効率を向上させるのかを検討していきたいと思います。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

戦略思考入門

やる気を戦略に変える道

高校生のやる気はどう整理? 高校生が持つ多くのやる気をどのように整理し、適切な優先順位をつけてもらうかという問題に対して、効果的なコーチング方法を考える良いきっかけとなりました。やりたい気持ちが多いことは理解できる一方で、無計画に進めた場合にどのような結果が生じるかを考える必要があり、自己分析をしっかり行い、自分が目指す姿を明確にして進む大切さを改めて実感しました。 チーム目標はどう明確に? また、目標を自分自身だけでなく、チーム全体で共有し明確にすることが非常に重要だと感じました。競合状況や利用可能なリソースを踏まえて、戦略的にチームを作り上げることが私自身の課題として浮き彫りになり、このコースを通じて戦略的な考え方を習得し、チームメンバーと共有していく意欲が高まりました。

クリティカルシンキング入門

グラフでひも解く生産実績の裏側

データ分解で何が見える? データを分解することで、見え方が大きく変わることに気づきました。単にデータをそのまま利用するのではなく、加工して項目を追加したり、分析のための新たな軸を設けたりすることが必要であると理解できました。こうした様々な視点からの検証が重要なため、グラフ化はそのための必須作業だと実感しています。 稼働時間はどう分析? また、日々の生産実績において、稼働時間と停止ロスの項目を全体的に定義し、MECE(漏れなくダブりなく)の考えに基づいて設定する取り組みの重要性も感じました。グラフ化によって、どの項目が停止ロスの要因となっているのかを明確に分析でき、各項目の傾向を監視することで、停止ロスの詳細な分析と対策の策定に活かすことが可能です。

「利用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right