データ・アナリティクス入門

納得の4ステップで未来へ

授業で何を学んだ? ライブ授業では、「What(何が問題か)」「Where(どこが悪いか)」「Why(どうして悪いか)」「How(どのように解決するか)」という4つのプロセスを学びました。これらのステップは非常に腹落ちし、納得のいく内容でした。 自身の弱点は何? 私自身、最初のアウトプットができないという弱点があるため、このプロセスを活用し、解像度を上げる工夫をしていきたいと考えています。 業務の課題を何で解消? また、現在担当している人口減少対策の業務において、要因が複雑でどこから手を付けるべきか悩むことが多く、市町村担当者を巻き込んで一緒に課題を整理することの重要性を実感しました。 分析はどう進む? 具体的には、まずはMECEの視点やクリティカルシンキングの手法を用い、何に取り組むべきかという問いの質を向上させるための課題洗い出しを進めます。さらに、学術研究論文などを参考にしながら、さまざまな仮説を立て、具体的な解決策を検討していく計画です。 計画の次の一歩は? 今後は、6月下旬からの市町村訪問に向け、どの課題をテーマとして設定するかを明確にするとともに、必要なデータを集めていきます。管内市町村の総合計画や、人口減少対策の総合戦略を読み込み、どの課題が重要視され、どのような解決策を試みているのかを丁寧に把握し、U・Iターン者や若年層の視点も取り入れて足りない部分を洗い出し、施策の強化ポイントを明確にしていくつもりです。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

データ・アナリティクス入門

理論を実践に変える学び

講義はどう実感? これまでの講義やワークを振り返る中で、思考が体系化され、頭の中がすっきりと整理された印象を受けました。いくつかのフレームワークについては既に知識がありましたが、実際の事例に当てはめて考えることで、ただ「知っている」段階から実際に使えるかどうかが別問題であることを実感しました。何度もアウトプットすることの大切さを改めて感じました。 契約データの見方は? また、各種施策を検討する際には、過去の契約データを分析する場面が多くあります。その際、ロジックツリーを用いて漏れなくダブりなく問題を整理し、複数の仮説を立てることの重要性を再認識しました。特に、契約データの項目選定や社外データの活用といった、目的達成に必要な分析手法を実践する意義を感じています。 SQL学習の計画は? 今後は、社内データを正確に取得するためにSQLの習得にも力を入れます。具体的には、オンライン講座を活用して4月から6月頃までに学習を完了させる予定です。 手書きの効果は? さらに、ロジックツリーやその他のビジネスフレームワークについては、パソコン上で作業するのではなく、あえて手書きで取り組み、自分の中に定着しているかどうかを確認しながら実践していきたいと考えています。 アウトプットをどう伸ばす? 実践的なデータ分析のアウトプット力を強化するため、関連する書籍や講座を活用し、9月までに数多くのアウトプットを経験して実力アップを目指していきます。

クリティカルシンキング入門

点から線へ広がる学びの旅

学びの意味は何? この6週間の学びを通じて、知識が点から線へと統合される感覚を持つようになりました。これからは、以下の流れに沿って課題に取り組み、その答えを導き出していきたいと考えています。 問いの定義は何? まず、考え始める前に「問い」が何であるかを明確にすることが重要と感じています。次に、現状を丹念に分析するため、データを細かく分解し、ひと手間加えることでより深く理解できるよう努めます。また、視覚的に把握するために、MECEやロジックツリーといったフレームワークを活用し、論理の流れを整理します。 主張の組み立てはどう? さらに、根拠に基づいた主張の組み立てを心がけ、伝えたい相手に的確に伝わる文章や資料作成を実践していきます。その際には、作文では主語や述語、文章の長さに注意し、資料作成ではリード文を工夫し、データの順序や主張の強調、さらにグラフなどを活用して視覚的な伝達にも配慮します。 問題解決の鍵は何? 特に、営業課題や人事課題など具体的な問題に対しては、日々発生する小さな問題も含め、何を解決したいのかを常に意識しながら分析と主張のプロセスを実践していきたいと思います。そのため、まず一つの対象を決め、課題に対する答えを導き出すことに注力し、実施期限を設けることで意図的に時間を確保していきます。さらに、資料化した内容は他者と共有し、理解度や納得感についてフィードバックを得ることで、より良い解決策を見出していこうと考えています。

クリティカルシンキング入門

データ分析で新発見!視野を広げる方法

データの意外な発見は? 数字を分析する際、単に数値を眺めるだけでなく、以下のような手法を用いることで新しい発見があることを理解しました。まず、グラフ化したりパーセントに変換することが有効です。また、データのグルーピングも年齢帯を変えるなどの工夫が必要です。さらに、複数の切り口から分析し、結果を疑いながら挑み続けることが重要です。 新たな視点は現実? このようなマインドを持つことで、特徴が見えなかったということ自体が「新しい発見」であると理解することができます。そして、新たな切り口が必要だと気づくこともできます。したがって、様々な方法でデータを分解し、分析していくことが脳の考え方をポジティブに変える重要なポイントだと学びました。 数の理由は何だ? 具体的には、「数」を扱う場面が多いため、データを様々な方法で分解し、それぞれの要因を特定していきたいと考えています。例えば、来場者が増えた原因や、顧客が不満を持つプロセス、売上向上の要因を詳細に分析したいと思っています。 多角的視点は十分? 今週中に、現在行っている来場者数の分析を一度見直し、見えているものだけで十分なのか、または他に見えてくるものがあるのかを検討したいと考えています。現時点では、業種や職種、来場日時といった切り口で分析していますが、事前登録の時期やセミナーの申し込み状況、WEBアクセスの頻度など、他にも試すべき切り口が思い浮かぶので、それらを用いて分析を試みる予定です。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

クリティカルシンキング入門

学びの姿勢で未来を切り拓く

6週間の振り返りは? 6週間を振り返ると、多くの学びがありました。クリティカルシンキングだけでなく、人生において学び続けることの重要性についても改めて確認できました。 大切な学びの姿勢は? 学びを進める上で重要な3つの姿勢として、目的を意識すること、自他の思考のクセを認識すること、問い続けることが挙げられます。また、相手視点での考察も重要であり、これを学びの前提条件として、今後も積極的に新しい学びに挑戦していきたいと思います。 問いと分析はどう? クリティカルシンキングでは、「問いは何か?」という点からスタートすることが大切です。分析過程においては、データの加工が必要であることを理解し、問いを解決するためには高解像度の分析を心掛けたいと考えています。そのためにはデータ分析の知識が重要です。また、主観に偏らず客観的に考えるために、フレームワークを活用する方法も知っておく必要があります。 知識の実践はどう? これらの知識は、以下のように自分の仕事で活用していきます。自部署の会議で発表する際は、明確な問いを基にPREP法を用いて内容を組み立てます。他者の言葉を理解する際は、相手の前提条件を考慮し、フォロワーシップを発揮して場の理解度を高めたいです。また、自分の考えをまとめる際は、アイデアを出す段階から問いを明確にし、誰に何を説明すべきかを意識します。対象に合ったデータ加工やスライド作成を行い、効果的なプレゼンテーションを目指します。

リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

クリティカルシンキング入門

データ分析で見つける戦略のヒント

分析の切り口は? データ分析において、「加工の仕方」「分け方の工夫」「複数の切り口で分ける」という3つのポイントが重要です。分析の結果として何も見えない場合でも、それは失敗ではなく、他の切り口に原因の手がかりがあることを示していると感じました。迷って時間を浪費するよりも、実際に手を動かすことで何かを見つけ出せることがある、という点も非常に心に残りました。また、「MECE」(漏れなくダブりなく)で物事を解析するときには、まず「全体を定義する」ことが重要です。この点についても大きな学びがありました。「漏れなく」という作業がとても大変だと思っていましたが、全体を定義することで範囲を限定できるという考え方に納得しました。 課題はどう解決? 次期中期経営計画で示された経営課題を解決するために、自部門の責任と役割を整理する際にこの考え方を活用したいと思っています。自部門の現状を分析し、その結果に基づいて短期的および中長期的な戦略や戦術を検討します。まず、雑多な業務を抱える自部門を大きく分類し、それぞれを1つの「全体」と捉えて、「MECE」により分析と戦略の検討をしてみたいと考えています。 実行への一歩は? 今進めている、来期の事業計画策定に向けた自部門の現状分析や戦略立案においても、「MECE」を用いた「プロセス分解」を試してみようと思います。特にWEEK2で学んだ重要なポイントを整理して書き留め、繰り返し確認しながら実行に移そうと考えています。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right