データ・アナリティクス入門

目的と比較で切り拓く新たな洞察

分析の目的は? 今週の学習では、分析の本質が「比較」にあることがとても印象に残りました。分析を始める際は、まず「何を明らかにしたいのか」という目的を明確に定め、その目的に沿って「何と何を比較するのか」を考える必要があると学びました。以前は、目に見える数値や要素をそのまま眺めるだけで分析を行ってしまい、十分な示唆が得られていなかったと気づきました。目的に立ち返り、目の前にない要素も含めた比較を行うことで、初めて意味のある洞察が得られるのだと理解しました。 改善点はどこ? 今回の学びは、GA4を活用した社内サイトの分析や、ページ改善、制作判断などの現場で役立つと考えています。具体的には、同じ目的を持つページ同士を比較しながら、閲覧数、流入元、離脱状況などのデータをもとに、どの部分に改善の余地があるのかを判断する手法が特に有用だと思いました。 目的整理はどう? 今後は、GA4の数値を目にする際に、まず「今回の分析の目的は何か」を整理し、その目的を明らかにするために「何と何を比較すべきか」を先に決めてからデータに目を通すよう意識したいと思います。また、現場からの制作依頼に対しても、既存のページとの比較を行い、対応の優先順位や妥当性をデータをもとに説明できるよう努めたいと考えています。 目的不明な時は? 一方で、実務の中では目的がはっきりしない状態で分析や施策検討を求められることも多いと感じています。そのような場合、皆さんはどのようにして目的を整理し、分析の着地点を見出しているのか、ぜひお伺いしたいです。

クリティカルシンキング入門

当たり前を疑い、論理で輝く

なぜ初めてで誤解した? クリティカルシンキングに初めて触れたとき、私はこれを「否定的に物事を見る思考法」と誤解していました。しかし、実際に学び、業務で意識して活用する中で、その本質は「物事を多面的に捉え、根拠に基づいて判断する力」であると実感しました。 どの意識が変わった? 今回の学習を通して、まず「当たり前だと思っていたことを疑う」ようになり、自分の考え方が大きく変化したと感じました。また、業務においては提案資料作成の際に、相手の立場に立って考察する意識が芽生えました。一方で、感情と論理を切り離す難しさも痛感し、事実と意見を明確に分けることの重要性を改めて認識する機会となりました。 どの根拠で提案する? 具体的には、提案力の強化に向けて、なぜその商品を提案するのか、どのような根拠があるのかを明確にすることの大切さを学びました。POSデータや市場トレンド、競合状況の分析に基づいた提案が、取引先の課題解決につながると感じています。 どうやって分析すれば? また、売上不振の際には、単純な感覚的判断に頼るのではなく、複数の視点から原因を分析する手法が有効であることを理解しました。こうしたアプローチにより、より具体的かつ説得力のある対策案を提示できるようになりました。 伝えるときの工夫は? さらに、社内での調整や報告においては、感情や主観が混じりがちな場面でも、事実と意見を明確に分けて伝えることが必要であると実感しました。これにより、会議や報告の内容がより論理的で理解しやすくなると感じています。

クリティカルシンキング入門

視点ひとつで未来が変わる

新たな発想は? 視点、視座、視野というワークを通じて、アイデアを広げる具体的なステップを学びました。各ステップで軸をずらし、視点を変えることで異なる可能性を引き出すアプローチは、短い時間でも新たな発想の扉を開く手法だと感じました。 批判的思考はどう? また、クリティカルシンキングという批判的思考法について学びました。一人でもテクニックを身につけることで、これまで経験してこなかった視点や発想に気づける点、そして周囲の意見を取り入れる大切さを再認識しました。この知見は、分析レポートの作成やデータの取り扱い、施策検討の場面で活かせると感じています。 レポートは分かる? 特に、分析レポートにおいては、読み手がアナリストだけでなく、企画者や経営層といった幅広い層であることを意識する必要があります。事実だけでなく、結果指標や売上といった視点でまとめるプロセスが、より分かりやすいレポーティングにつながると実感しました。 顧客体験を考える? また、企画者の意図や、提供するサービスがどのように顧客体験を改善するかを検討する際にも、今回学んだ視点の切り替えや多角的なアプローチは大いに役立つと考えています。 情報の真実は? そして、日々新聞や書籍などから情報を得る際には、事実と意見を明確に区別しながら、批判的な視点で読み解くことが重要だと感じています。題材を自分ごとに捉え、ベースとなる軸や書き手の意図を考慮しながら、自分なりの表現にまとめることで、本当に伝えたいことは何かを見極めることができると考えています。

データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

クリティカルシンキング入門

小さな分解、大きな成長の軌跡

データ分解の意味は? データを分解して読み取ることは、大きな発見がなくても重要な学びにつながります。分解の結果として見逃すことがあっても、それを失敗と捉えず、なぜその部分が発見できなかったのかを学ぶことが大切です。分解が不十分な場合、結果の解釈に誤りが生じ、誤った打ち手につながる恐れがあるため、着実に進めることが求められます。 分析の発見は何故? アナリストとしてデータ分析に取り組む際は、打ち手につなげることに重点を置いていましたが、ステップごとに学びをレポートする意義にも気づきました。たとえ施策効果や次のアクションへの直接的なインパクトが短時間で得られなくても、論理的なレポートが関係者との議論につながるのは大きなメリットです。常に様々な角度からデータを見るクリティカルシンキングを実践しつつも、周囲との協調を大切にし、堅実な報告を続ける姿勢が重要だと考えます。 手を動かす理由は? まずは、実際に手を動かし、各ステップでの学びをアウトプットすることが第一です。作業を進める中で、なぜその分解から始めたのかをしっかりと伝え、周囲から意見をもらえる環境づくりが必要です。小さな発見であっても、粘り強く取り組むことで、確かな結果へとつながります。 変化の見極めは何処で? 日常においては、単にパーセンテージの上昇だけで全体の動きを判断するのではなく、全体がどのように推移しているのか、その変化のインパクトを冷静に見極めることが求められます。こうした視点が、より正確な判断と次のステップにつながるでしょう。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

クリティカルシンキング入門

資料作成の新しい視点を学ぶ旅

メッセージをどう活かす? 作成者のメッセージを深く理解し、グラフを作成して資料化するスキルを学ぶことが重要であると感じました。単に型にはめたグラフを選ぶのではなく、メッセージとの整合性を意識して見直すことが大切です。これまでの自分を振り返ると、資料とは作成者が伝えたいことを載せるだけではなく、伝える相手を理解し、相手が知りたい情報をわかりやすく伝える視点が重要だと気付きました。 相手に合わせる方法は? 報告や共有資料として、上司のプレゼン資料、部署内の担当報告資料、他部署への実施報告資料、案内資料など、日々の資料作成に活用しています。相手の役職、部署、経験値が異なるため、フォントや装飾、グラフの選択、デザインなどを相手に合わせて考えたいと思います。業務効率の観点でも、見た目がきれいな資料ではなく、目的が達成できる資料を作る意識が大切です。 グラフの選定で迷う? グラフに関しては、業務でグラフを使用する機会が少ないため、グラフの種類やそれぞれの得意とするメッセージについて理解を深める必要があります。調べて学ぶことや、過去の会社の資料などを振り返って読むことが学びにつながります。 資料の目的は何? 資料作成においては、次の手順を考えています。まず、過去の資料作成の手順を振り返り、自分の傾向を見直します。そして、次回作成時には資料で誰に何を伝えるのか、伝えるメッセージは何かを明確にし、それを常に見返せる状態を作ります。最後に、必要なデータを事前に調べ、グラフを作成するなどの準備をして進めます。

アカウンティング入門

数字が語る事業活動の秘密

なぜ数字は物語る? Week1を通じて、アカウンティングは単なる数字の整理ではなく、事業活動を説明するための言語であると再認識しました。以前は財務三表の構造自体は理解していたものの、そこに表れる数字がどのような活動の結果として生じているのか、その意味合いに十分な注意を払ってこなかったことに気づきました。 定量と定性はどう? また、財務データという定量情報と、事業活動の実態という定性情報を行き来しながら読み解く思考の重要性を実感しました。この往復的な思考を通じ、企業の意思決定や価値創出のプロセスをより立体的に捉えられるようになると感じています。 財務を再読する理由は? 今回の学びを踏まえ、まずは自社の財務諸表を改めて読み直し、数字の背後にある具体的な事業活動をイメージできるかを確認したいと考えています。売上や利益などの結果だけでなく、どのような価値提供や経営資源の使い方がその数字につながっているのかを自分なりに言語化して整理することが第一歩です。 数値で議論は進む? さらに、労使協議や社内議論の場面では、財務データから読み取れる傾向や背景を整理し、定量と定性の双方を踏まえた見立てができるよう努めたいと思います。特に、収益構造や投資の方向性を客観的に把握することで、交渉や意見交換の質を向上させることを意識しています。 なぜ定期チェックする? 今後は、四半期ごとに自社の財務諸表をチェックする習慣をつけ、数字と事業活動の結びつきをさらに明確にし、思考の精度を継続的に高めていく予定です。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

クリティカルシンキング入門

データ×想像が生む信頼の伝え方

week5の難しさは? week4までは「自分の伝えたいことを考え抜く」ことの大切さを学びましたが、week5では大量のデータの中から本当に伝えるべき内容を見極める難しさを実感しました。 どう説得力を作る? また、説得力を高めるためには、次の①~③のサイクルを回すことが重要だと感じました。まず①、伝えたい思いを表現する前に、その背景をさまざまに想像します。次に②、その思いがデータによって裏付けられているかを確認し、さらに③、根拠が不足している場合には追加のデータを集めます。こうした手法により、単に閃きに頼るのではなく、しっかりと時間をかけることで、より良い成果が得られると自信が持てました。 サイクルの意義は? ①~③のサイクルをしっかりと回せば、客観的な調査結果や説得力のある行動が浮かび上がり、未知の領域にも効果的にアプローチできると感じています。 大テーマの捉え方は? また、想像するのが難しい大きなテーマに対しても、この手法は効果を発揮します。たとえば、新たなビジネス展開において、どの分野や顧客をターゲットにするか、どのようなアプローチが有効かを見極める場合などです。 計画への活かし方は? ただし、十分な時間をかける必要がある分、定常業務にそのまま適用するのは難しいと考えています。年度方針や中期計画など、じっくり取り組む必要がある場面で活用するのが最適だと思います。現在、今期の計画に取り組むタイミングであり、この学びをしっかりと活かしたいと感じています。
AIコーチング導線バナー

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right