データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

クリティカルシンキング入門

数字の楽しさと効果的な使い方発見!

数値をどう分解する? 数値を分解することの楽しさが増し、明確に理解できるようになりました。また、分解したデータを表にしてわかりやすく伝える重要性も実感しました。分解する際には、MECE(モレなく・ダブりなく)や層別、変数別、プロセス別などのフレームを意識することが大切です。 新たな知識をどう活用する? この知識は、来期のプラン作成や今年の成果分析、自店舗の顧客傾向を把握する際に役立ちます。例えば、店舗のPLを分析する際や、与えられた時間内に業務が終わらない時にプロセスを分解することで、問題点を特定することができます。また、チームメンバーに特定のカテゴリーで売上を伸ばすことをコミットする際も、各店舗の傾向を商品で分解して機会点を見える化することで、目標設定やプランニングがスムーズに行えます。 苦手意識をどう克服する? これまで数字の分解に対して苦手意識があり、必要最低限にとどめていた部分もありましたが、今回の学びを通じて積極的に数値を分解する経験を積みたいと思います。直近では来期のチームプランを作成するため、今期の成果を分解して強みや機会点を明確にし、チームメンバーが視覚的にわかりやすい資料を作成する予定です。また、顧客調査の結果をMECEを意識して分解することで、各店の機会点を把握し、チームメンバーに共有することも計画しています。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

クリティカルシンキング入門

振り返りで学びを深める方法

目的は明確ですか? データを扱う際には、目的を明確にし、それにふさわしい形で情報を伝えることが重要です。このことは、相手に何を伝えたいのかを考える際に非常に役立ちます。また、目的に立ち返る姿勢も欠かせないと感じました。 良い文章の秘訣は? 良い文章とは、しっかりと目的を把握し、読み手の立場を理解し、内容がまとまっていることに加え、読んでもらえる魅力があることです。この考えをもとに文章を書くことが求められるでしょう。 グラフの選び方は? 例えば、製品の売上データを使用した顧客への活動プランを作成する際は、どの形式のグラフがデータを分かりやすく示せるかを考えます。また、スライド作成においては、強調したい部分に工夫を凝らし、フォントの変更やアイコンの適切な利用を心掛けます。 相手を意識できる? 講演会の企画書においては、その企画書を読む相手が誰なのか(例えば、依頼する医師なのか、社内向けのプレゼン用なのか)を意識し、目的が伝わる文を作成します。 行動はどう伝える? さらに、会議の議事録を作成する際には、相手にどのような行動を期待するのか、そしてどうすれば読んでもらえるかを考慮して記録します。 メールの狙いは? また、社内メールや医師へのアポイントメールでは、目的を明確にし、タイトルにも趣向を凝らすことが肝心です。

戦略思考入門

規模と範囲の経済性を活かす鍵

規模の経済性とは? 規模の経済性と範囲の経済性は、ビジネスにおいて重要な概念である。生産量を増やすことでコストを削減できる規模の経済性を追求することは有用だが、注意しなければならないのは、これが過度になり、かえって利益を阻害する規模の不経済に陥る可能性もあるということだ。一方、範囲の経済性は、異なる商品を同じ生産設備で生産しコスト削減を図るもので、ビジネス環境においても応用が効く。例えば、他部署や他社での経験を新しい仕事で活かすことで、経済性を高めることができる。 個人としての成長戦略とは? 自社の場合、規模の経済性を活用することは得意だが、範囲の経済性は十分に発揮できていない。今後は、自社のビッグデータを上手に活用したビジネスを見つけ出し、ビジネスの基盤をより一層強化していく必要があると考えている。 個人としては、現在の職務を徹底的に極めることが重要であると感じた。このことは、将来的に他部署に配属された際に、範囲の経済性を高めることに繋がると考えている。具体的には、備品什器の仕入れにおいて、自部署では規模の経済性を活用している。現在、自社工場への移行を進めることで仕入れコストを下げているが、価格交渉の見直しを行うことも検討する価値があると感じた。また、自身のスキルについてはその棚卸を行い、得意分野と苦手分野を明確にしていきたい。

クリティカルシンキング入門

伝えたい順で魅せるスライド術

伝える順序は大切? 学びの中で、まず伝える順序に着目することの重要性を再認識しました。スライド作成時に、まず何を伝えたいのか、またその根拠としてどのグラフやデータが必要かを意識することで、受け手にとって分かりやすい資料が作れると感じました。さらに、資料全体の色調、書体、イラストなど、視覚的な要素にも工夫を凝らすことで、相手にどう捉えてもらうかを考える機会になりました。 実務での活用はどう? また、学んだ内容は実際の業務にも直結しています。社内の戦略会議や中間報告、トラッキング結果の共有など、社内向けのプレゼン資料作成で活用できることが実感できました。顧客への説明資料においては、製品の伝えたいメッセージや、説得力のあるエビデンスの見せ方に役立っています。 資料見直しの効果は? さらに、カタログや各種資材の作成においては、我々が何を伝えたいのか、そのためにどの情報をどのように見せるかを工夫する上で、大変参考になりました。作成した資料は翌朝に再度見直すことで、伝えたい内容が改めて明確になり、スライド全体を俯瞰して強調すべきポイントやグラフの見やすさを確認する習慣が、資料の質をさらに向上させています。上司や同僚の意見を取り入れることや、資料作成後にロープレで流れや根拠を整然と説明できるか確認するプロセスも、非常に有益な学びとなりました。

データ・アナリティクス入門

ありたい自分に出会う学び

どんな人物を目指す? まず、自分が何を学ぶかという内容よりも、どのような人物になりたいか、その「ありたい姿」を明確に描くことの大切さを改めて実感しました。講座を進める中で、演習に没頭していた自分がいましたが、その過程で「ありたい姿」に向けては、学習習慣を確立しながら、同時にコンセプチュアル・スキルを身につける必要性を感じるようになりました。 どんな体験を届ける? また、ただ単に数値を改善するのではなく、ユーザーにどのような体験を届けたいのかという「ありたい姿」から物事をスタートすることで、ぶれのない方向性が保てると感じました。具体的には、何をいつまでに行うかという計画だけでなく、チーム全体で「私たちはどのような存在になりたいか」を共有し、そのビジョンに基づいて戦略を立てることで、メンバーの主体性が高まり、プロジェクトがスムーズに進行することを学びました。 なぜ数字が気になる? さらに、データに注目する際は「なぜこの数字になったのか」という仮説を立て、チーム内で共有することの重要性を知りました。月初には、プロジェクトを通じた「ありたい姿」を簡潔に1~2行でまとめ、企画立案や施策レビューの際には、3Cや4Pなどのフレームワークを活用して情報を構造化することで、現状のチェックと翌月に意識すべきスキルの選定が可能になると感じています.

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

戦略思考入門

未来予測にAIを活かすビジネスフレームワーク活用法

フレームワークの総合的活用法は? フレームワークを用いることで、自分や関係者だけの限られた情報に縛られず、ビジネスにおいて必要な要素を総合的に考えることが求められます。手に入れられるデータは現時点のものに限られ、未来のデータは推測に依存せざるを得ません。しかし、重要なのは未来に基づいた施策であり、この未来に対する包括的な検討方法をどうするかが鍵となるでしょう。 AIはどこまで活用できる? 一般的なビジネスフレームワークは理解しやすく、人間同士の議論には適しているものの、過度に単純化されている部分もあります。現代ではAIの存在があるため、現時点での事実は人間が収集し、チェック、設定する必要がありますが、未来への影響、特に複雑な交互作用の部分はAIにシミュレーションを任せるといった取り組みが求められるでしょう。 AIを用いた未来予測の具体策は? 使い慣れたビジネスフレームワークに基づいてAIに未来を予測させるためのテンプレートを、DifyやExcelで考案しています。すでに「ゴールデンサークル」や「バリュープロポジション」、「ビジネスモデルキャンバス」、そして「機械学習プロジェクトキャンバス」の素案を作るためのテンプレートが存在しています。これらを活用し、交互作用をも含む未来の予測にAIを利用できないか、o1に相談してみます。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right