クリティカルシンキング入門

データ切り口で見える解約の真実

データはどう活かす? データ自体を見るだけではなく、その見せ方を工夫することで、グラフ化したり比率を示したりするなど、異なる視点から事実が浮かび上がることが分かりました。さらに、データを様々な切り口から分析することで、明確な傾向が見えてくると同時に、その切り口に意味があるかどうかが重要であると感じました。 解約傾向は何だ? また、解約企業の傾向(解約時期や解約理由など)を詳細に分析することで、必要な施策を適切なタイミングで実行できるのではないかという考えに至りました。そこで、復習も兼ねて、以下の点について取り組んでみることにしました。 施策実行の鍵は? まず、解約企業のリストを作成し、解約理由を細かく分解してデータ化します。さらに、解約企業の利用状況を抽出し、解約前の利用状況も分解してデータ化することで、今後の活動施策への活用を目指します。これにより、既存顧客へのアプローチの際、重点的に注力すべきポイントを明確にすることができると考えています。

戦略思考入門

競合を超える!戦略と分析の新発見

ターゲットと競合の意義は? 差別化戦略を考える上で、改めて「ターゲット顧客」と「顧客視点の競合」の重要性を認識しました。競合にばかり目を向けると、自社の本質を見失うことがあります。そこで、VRIO分析などのフレームワークを活用し、戦略立案や競合の把握に役立てることが重要です。 戦略実行の鍵は何? 経営層が策定した戦略を実行する場面が多くありますが、今学んだフレームワークを活用することで、戦略への理解を深めることができます。また、自分が収集したデータを効果的に活用し、それを他のメンバーに共有することで、組織全体を正しい方向に導く努力をしています。 業務で差をつける方法は? 具体的には、自分が担当する業務内で顧客と競合を見直し、現在の設定と比較して違いを見つけ出します。市場の変化を感じるだけでなく、フレームワークを用いて言語化し、その分析結果を組織へフィードバックしていきます。この考え方や動きを他のメンバーにも広げていくことを心掛けています。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

クリティカルシンキング入門

視覚×データで磨く伝達術

視覚要素の威力は? リード文とグラフ、データなどを組み合わせることで、情報伝達力が向上することを再確認しました。視覚的な要素を取り入れることで、受け手が内容を誤解しないようにする効果があると感じています。また、資料作成においては、周囲の環境や相手の置かれた状況、立場といった前提条件を明確にすることが重要です。 報告文の改善方法は? リード文は、社内の業務連絡やチャットで必ず目を通してもらいたい内容として活用されており、幹部向けの予算報告や顧客向けの報告にも有用だと考えています。さらに、これまで文章で行っていた報告内容を、視覚的に分かりやすいグラフやデータに置き換えられないか、検討を進めています。 他者目線を考える? すぐに活用できる場面は少ないものの、日常的にどのようにすれば情報が視覚的に伝わりやすくなるかという感覚を磨くことが大切です。また、作業報告においても、相手目線で内容がどう映るかを意識し、迅速に対応できるように努めています。

クリティカルシンキング入門

多角分析で心ひらく瞬間

データ分析の視点は? データを分解して見ることで、見え方が全く異なることに気づきました。数値の動向が感じられるような分解軸を柔軟に設定することで、さまざまな視点から分析が可能になります。 仮説検証のポイントは? 1つの軸だけでなく、他の軸も検討しながら負荷をかけることで、導き出した仮説の正確性を検証し、その精度を高めるプロセスがとても重要だと感じました。 顧客分析の切り口は? 実際の顧客分析においても、年代などのパーソナルな情報や興味関心のデータをもとに、何かしらの施策が検討できる可能性があります。流入している顧客層だけでなく、購買している顧客層についても、これまで以上に複数の観点から分解して分析することが大切だと思っています。 最適化の方法は? 分解する軸をどのように最適化していくかは議論の余地があり、試行錯誤によってアタリをつけていくのが良いと考えています。皆さんはどのように感じられたか、ぜひ意見を聞かせていただけると幸いです。

クリティカルシンキング入門

効率アップの秘訣!データの切り口と見直し術

データの見せ方を工夫するには? データには見せ方があります。見えている数字だけでなく、切り口を変えることで新たな視点が見えてくることもあります。切り口を多く持つことが重要です。MECE(Mutually Exclusive, Collectively Exhaustive)を意識することで、モレやダブリを防ぎ、精度の高い分解を行うことができます。 業務フローの見直し方法とは? 新たな業務を請け負う際や業務フローを起こす際には、現在のやり方をMECEに当てはめ、モレがないか確認します。また、プレゼン資料を作成する際には、データの見せ方を切り口を変えて分解することで、納得感のある資料を作成することができます。 資料作成のコツを知ってる? 一度作成した業務フローは3回見直しを行い、モレがないか確認します。その際、時間を変更してみることも有効です。資料を作成する際には、切り口を3つ以上変え、毎回グラフにして見えていないものがないか確認を行います。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

データ・アナリティクス入門

偏見を超えるデータの力

バイアスはどう捉える? データ分析を学ぶ中で、ただ数値を扱うのではなく、自己のバイアスを取り払い、タスクに合わせてニュートラルな視点に切り替える大切さを実感しました。このような状態で、高い専門性と比較するスキルを活かし、データから具体的な仮説を立証できると理解しています。 セキュリティは大丈夫? 社内で広くデータ分析を利活用するためには、堅牢なセキュリティ基盤とデータ基盤の構築が不可欠だと感じます。編集機能やデータ閲覧機能を適切に制御しながら、データウェアハウスを運用することで、業務に活かすための取組みが一層進むと考えています。 AI応用はどう進む? さらに、データアナリティクスを深く理解するために、4月から9月までの期間を通じて学習を進めるとともに、生成AIを取り入れたデータ分析への応用も視野に入れています。データウェアハウスから得られる結果や知見を、プログラムを通じて読み解くスキルの習得が、今後の発展に大いに寄与すると感じています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right