データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

アカウンティング入門

原価率から学ぶカフェ経営の知恵

価格と原価の関係はどうなってる? 原材料が高価でなくとも、販売価格が低い場合、原価率が高くなる可能性があることを学びました。特に、アキコのカフェではこのことが当てはまりました。また、限られた情報の中で損益計算書やバランスシートを使い、企業の経営状態を読み解くのは難しいと感じました。 経営戦略の理解はどう進む? 時間がある時には、同業他社や他業種の損益計算書、バランスシート、IR情報を調べ、その経営戦略を理解することを心がけています。他社から得た知識を、自社や自分の業務に活用することで、仕事の質を向上させることが目的です。 同規模企業と何が違う? また、財務諸表を分析する際は、まず業界トップの企業を確認し、その後、自社や同規模の企業と比較して違いを探ります。そして、その中から参考にできそうな経営戦略を自身の業務や部署に活かす方法を検討しています。

アカウンティング入門

数字とストーリーで描く成長戦略

損益の分類はどう? かかった支出が損益計算書上で各要素に分類され、それぞれの分類方法を理解することができました。利益を上げるためには、ビジネスのコンセプトに応じてどこを改善すべきかをストーリーとして捉えると分かりやすいという点も納得できました。 会社の方向性はどう? また、現在務めている会社の方向性や目標が、今後PLのどの部分に大きく影響を与えるのかを予想し、理解したいと感じました。同時に、自部門でどのように貢献できるのか、会社の利益と企業価値向上の両面から目標を設定する必要性も実感しました。 市場の動向はどう? さらに、会社の方向性と市場での立ち位置を踏まえて、自社の損益計算書を過去と比較しながら、どの点が伸びているのか、また落ちているのかを数字で読み解くことで、市場の流れや将来の自社の位置付けを予想してみる重要性について学びました。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

データ・アナリティクス入門

データを活かす!視覚化テクニック入門

データはどう活かす? データは単にビジュアル化すれば良いわけではなく、用途に応じて適切に使わなければなりません。また、単にグラフに表現された情報だけでなく、その背後や空白の部分からも情報を見つけ出すことができます。さらに、TPOに合わせて代表値の取り方や計算方法が変わりますが、その結果だけで仮説を導き出すことはできません。 難業務の可視化方法は? 現状、私が携わっている業務ではデータを利用したり、数値化・グラフ化する機会があまりないため、自分の業務に適用するのが非常に難しいと感じています。反対に、数値化やグラフ化が難しい業務をどのように工夫して視覚的に示すことができるのか、そうした方法について学びたいと考えています。

データ・アナリティクス入門

単純平均だけじゃない!学びの深層

代表値選びのポイントは? あまりにも多くの消費者データを見る際、単純平均だけで全体を判断してしまう傾向にあると改めて感じました。そのため、代表値の計算方法を再検討する必要があると実感しています。代表値として単純平均、加重平均、幾何平均、中央値の4つの方法があること、またそれぞれのばらつきを標準偏差で評価するプロセスが欠かせない点を改めて認識しました。 標準偏差の意義は? また、標準偏差の公式は覚える必要がないといわれていますが、その理由についてより深く理解したいと考えています。√の記号に初めて触れたのは高校生の頃のことだったので、改めてその意味や背景について興味を持つようになりました。

データ・アナリティクス入門

軸を変えるデータの魔法

計算法はどう選ぶ? 単純平均は日常的に使っていたものの、加重平均や幾何平均、標準偏差といった手法についてはあまり馴染みがなく、データに合わせた適切な方法で数値を捉えることの重要性を改めて認識しました。何を明らかにしたいのかという目的を明確にし、その目的に合った手段を選ぶことが大切だと感じました。 グラフで現状を把握? また、平均値にばかり注目していた自分に気づき、縦軸と横軸に異なる値を設定して分布のばらつきを視覚的に捉えることで、新たな発見が得られる可能性を感じました。リード獲得チャネルごとの成約率や成約までの期間を、見やすいグラフで表現することで現状の把握に役立てたいと思いました。

データ・アナリティクス入門

データが語る平均の真実

平均計算のアプローチは? 平均の取り方やデータのばらつきを様々な方法で検証することで、より正確な分析が可能になると実感しました。ビジネスにおいて平均値が用いられる場合も、その計算方法や元となるデータの内容をしっかり確認する必要があると考えています。 データ集計の工夫は? また、ERP導入時に用いられるデータ集計機能について、顧客と集計方法を決定する際に今回学んだ考え方が非常に参考になると思いました。さらに、見積提示の際に平均工数を算出する必要がある場合、要件によって結果にばらつきが出るため、算出方法を工夫しながら検討する必要があると感じています。

「計算 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right