データ・アナリティクス入門

多角的仮説から導く成功の鍵

なぜ仮説を複数持つ? まず、常に複数の仮説を立て、一つに決め打ちせず、各仮説が原因を多角的に網羅できるように意識することが重要です。どこに原因があるのか、何が原因なのかという点について、切り口を変えて考える必要があります。 比較指標はどう決める? 次に、仮説を検証する際は、何を比較の指標にするかを明確に決めた上で、どこに注目し、何と何を比較するのかという意図を持つことが大切です。 データ収集の方法は? また、データ収集においては、対象者(誰に聞くか)と方法(どのように聞くか)をしっかり考え、たとえ反論になり得る情報も排除されずに集めるよう努める必要があります。これにより、比較のためのデータが十分に得られ、偏りのない分析が可能となります。 仮説の使い分けは? さらに、結論を導くための仮説と問題解決を目指す仮説を明確に区別しながら取り扱うことが求められます。普段は特許情報やその他の情報を用いていますが、さまざまな立場(営業、技術、知財など)から情報を収集する際には、ネガティブなデータが除外されていないかを意識することが重要です。 議論で論点はずれる? 実際に、立場の異なる関係者による議論の場では、「課題」の共通認識が不十分なために、結論の仮説と問題解決の仮説が混同され、論点がずれてしまい、適切な結論に至らないケースが見受けられました。特に、人からの情報は各立場の主観が影響して、情報の取捨選択が無意識に行われることが多いため注意が必要です。 課題はどう分析する? このような背景から、「課題」が何で、どの仮説に基づいて何を分析するのか、また、仮説、比較の指標、意図がぶれないようにしっかりと管理する必要があります。仮説を早期に決め付けたり、先入観に頼ってとりあえずデータを分析したりする危険性があるので、まず観点を整理し、複数の仮説を立てた上で深堀し、必要なデータを洗い出して収集することが求められます。 決め付けはなぜ危険? さらに、結論を導く仮説にするのか、問題解決の仮説にするのかを明確にした上で、上記のプロセスに従い取り組むことが大切です。

マーケティング入門

受講生が語る実践セグメント術

どうしてターゲットを絞る? すべての人のニーズに応えようとすると、変数が多くなり一時的な成功で終わるリスクがあるという考え方が印象に残りました。市場をセグメントし、ターゲットを絞ることで、限られた経営資源の中で持続可能な戦略が構築できる点に共感しました。 なぜ普及要件を評価? また、新しい商品やサービスがなぜ受け入れられるのかを判断するための視点として、比較優位、適合性、わかりやすさ、試用可能性、可視性という5つの普及要件を学んだことは非常に有益でした。これらの観点から考えると、名称やネーミングが市場で果たす役割が明確になり、戦略の整理に役立つと感じます。 なぜ階層別を選ぶ? 例えば、企業の研修では、すべての社員への実施が理想ですが、実際には経営資源の制約から優先順位をつけ、階層別研修として実施している現状があります。これは、あくまでも限られた資源の中で行う一つの工夫であり、他の層への研修が完全に不要と決めたわけではありません。優先順位の根拠そのものについても再考の余地があると感じています。 どう判断受講メリット? また、新たな研修企画を社員の視点から評価する場合、まずは日常業務や他の自己啓発と比べて明確なメリットがあるかという比較優位が重要です。次に、研修内容が既存の業務や生活に適合しているかどうか、そして、なぜこの研修を受講するのかが一目で分かるわかりやすさも欠かせません。さらに、ティザー動画などで疑似的に体感できる試用可能性や、受講実績が上司にわかることで研修が一種のステータスとして認識される可視性も、大切なチェックポイントとなります。 なぜ大規模企画? 私自身は、中堅層を対象とする大規模な研修企画に取り組んでいますが、数千人という規模をどのようにセグメントするかに悩んでいます。実際に人事データから得られる情報は年齢や部門程度で、実際の行動や特性、成績などの詳細なデータは把握できないため、最終的には各部門に人選を依頼する形になっています。この点についても、より効果的なセグメンテーションを実現できる方法を模索中です。

データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

リーダーシップ・キャリアビジョン入門

自律と挑戦が描く組織未来像

エンパワメントって何? エンパワメントについて学んだことは、組織の目標達成のために、メンバー自身が自律的に行動できる力を育む技術であるという点です。押しつけや単なる指示ではなく、育成の観点からメンバーを支援することで、彼ら自身の成長につながり、結果として組織全体のレベルアップにも寄与すると感じました。また、各メンバーのレベルアップに繋がる業務内容の設定や、効果的なコミュニケーションの重要性についても改めて学び、組織の成長にはメンバー個々の成長が不可欠であると実感しました。 目標はどう意味づけ? 目標設定に関しては、目標達成後にどのようなレベルに到達しているか、また達成によってどのような状態が実現できるかを明示することが重要だと感じました。以前は単に組織の課題に対する数値目標を示すだけでしたが、目標の意義や、本人にとってのメリットを具体的に示すことで、やる気や意欲を引き出す効果があると考えています。 よい目標の作り方は? また、よい目標を設定するためには「意義」「具体性」「定量性」「挑戦」という4つの軸を意識する必要があります。これにより、目標に込められた意義が明確になり、本人のやる気や成長へとつながる目標設定ができるようになると期待しています。 組織強化の方法は? 今後は、目標とその意義を明確にすることで、強い組織づくりを目指していきたいと考えています。現在は所属する部署を中心に取り組んでいますが、将来的には部全体へと視野を広げ、関わりの少ないメンバーも対象としていくことで、全体の課題解決や組織力の向上に貢献できると信じています。マネージャーとしてだけではなく、リーダーとしてチームをけん引する視点を大切にしていきたいと思います。 面談で何を確認? 今年度の目標設定はすでに終了していますが、改めて組織メンバーとの個別面談を通じ、各自の目標について丁寧に説明し直す予定です。特に、「意義」と「挑戦」に重点を置くことで、各メンバー自身の成長を促し、組織全体の向上につながるよう努めていきたいと考えています。

データ・アナリティクス入門

フレームで切り拓く問題解決

分析で何が分かる? この講義では、業務の問題解決のために「分析」を徹底的に学び、質の高い意思決定スキルを向上させることがテーマでした。分析とは、比較を行うことにより現状を理解する手法であり、問題解決に取り組む際は、まず解決すべき問題を明確にし、状況の全体像を把握する必要があると感じました。 仮説はどう練る? さらに、問題点の仮説を立て、どのようなデータを用意し、どのように加工して何を明らかにするかというストーリーを作ることが重要です。闇雲に分析を進めるのではなく、グラフを活用するなどして、周囲への説明が分かりやすくなる工夫が求められます。 どんな枠組みを活かす? また、今回の講義では様々なフレームワークを活用する手法についても学びました。ロジックツリーを用いてMECEに問題を絞り込む方法、定量分析の視点として何を比較対象にするかやどのグラフを使用するか、さらにデータを平均値や中間値に集約して分析する方法など、具体的なアプローチが紹介されました。相関係数や度数・時系列・パレート分析といった数字に基づいた分析の手法や、3Cや4Pの軸で仮説を広げる方法にも触れ、ビジネスにおける仮説には結論の仮説と問題解決の仮説の二種類があることも学びました。 実践でどんな変化? 私は営業支援の仕事に従事しており、データ分析を通じた得意先への課題解決提案を今後も継続していく考えです。これまで自己流の分析やストーリーの立て方では、汎用性に欠ける面やサポートのしづらさを実感していましたが、本講義で学んだフレームワークや定型の分析手法を取り入れることで、体系的に仕事を進められるようになりました。特に、若手メンバーへのサポートにも大いに役立てたいと考えています。 今後の対策は? ただ、問題解決の4つのステップに対して、それぞれに合った分析手法やフレームワークの整理がまだ十分にできていないと感じています。今後は、皆さんと議論しながら確認する機会を持ち、より深く理解を深めていきたいと思います。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

掘り下げる力が課題解決を変える

問題解決の流れは? 問題解決のプロセスを整理するために、まずは「問題解決の4ステップ」について学びました。基本の流れは、what(問題の明確化)、where(問題箇所の特定)、why(原因の分析)、how(解決策の立案)という順番です。中でもwhereの部分では、どこに原因があるのかを深く掘り下げ、分析対象の範囲を絞ることで、原因を検証しやすくする点が強調されています。 仮説の立て方は? さらに、原因に対する仮説を立てる際には、複数の仮説を出すことや、異なる切り口(ヒト・モノ・カネなど)から考えることが重要です。これにより、一面的な見方に偏らず、網羅的な分析が可能になります。そして、仮説の検証に向けて、どのようなデータを収集するかを意図的に選定し、意味のある対象から適切な方法で情報を得ることが求められます。 データ収集はどう? また、都合の良いデータだけでなく、比較のための情報収集も欠かさず行うことが必要です。反論を排除するために、仮説に反する情報も踏まえた検討が重要で、これにより説得力のある分析が可能になります。ここでは、フレームワークとして3C(市場、競合、自社)や4P(製品、価格、流通、プロモーション)を活用する方法が示されています。 全体評価は? 総評として、問題解決の4ステップがしっかりと整理され、特にwhereの部分を掘り下げる姿勢が評価されています。今後は学んだ理論を実際のビジネスシーンに応用し、複数の仮説の中から優先順位を明確にする方法を検討することが期待されています。 進捗報告はどう? また、メンバーの進捗報告に際しては、各自がこのプロセスに沿っているか確認することが重要です。仮説が複数たてられているか、異なる視点での切り口が取り入れられているか、さらにはデータ収集が適切に行われているかを、リーダーを中心としたレビューの場でしっかりと意見交換を行い、全体の分析精度を高めるよう努めてください。

データ・アナリティクス入門

検証の軌跡が未来を変える

原因って何が影響する? 問題の原因を追究するためには、対象となる現象が起こるまでのプロセスを細かく分解し、各段階の要素を把握する手法が有効であることを学びました。また、複数の可能性を網羅的に洗い出し、根拠に基づいて最適な解決策を絞り込む方法も身に付けることができました。 検証はどのように進む? 仮説検証の手法としてのA/Bテストにおいては、検証対象の効果を正確に判断するために、できる限り条件を揃えた同一環境下で比較することの重要性を再認識しました。これにより、得られる結果がより信頼性のあるものになると実感しました。 なぜ離脱が発生する? さらに、ユーザーの利用過程をプロセスに分解し、どの段階で離脱が発生しているのかを探るファネル分析についても、具体的な事例を通じて理解を深めることができました。一方で、実際にA/Bテストの結果をもとに今後の方針を決定する際、テスト実施自体に対する関係者からの合意や納得を得る難しさを改めて感じる機会もありました。 分析のポイントは? そこで、What、Where、Why、Howの各ステップに沿って分析を進める重要性を認識しました。特に、WhyとHowの部分にスムーズに入れるよう、まずはWhatとWhereについて関係者全員で共通認識を持つことが不可欠です。また、総合演習では「満足度が下がっている」という結果だけに飛びつかず、どこに問題があり、なぜそのような状況に至ったのかを分解し、分析・判断することの大切さを学びました。 具体策はどうすべき? 具体的には、以下の点が重要です。まず、What、Where、Why、Howの各段階に沿って、問題を丁寧に分解すること。次に、不正解の仮説は存在しないという前提に立ち、考えられる仮説を2~3案以上、網羅的に検討する癖をつけること。そして、A/Bテストやファネル分析を通じて仮説の正否を検証し、施策の精度向上につなげることが大切だと感じました。

リーダーシップ・キャリアビジョン入門

伝え方ひとつで未来が変わる

伝達はどう改善すべき? 自分が「任せたつもり」でも、実際には伝わっておらず、期待した成果に結び付かなかった経験があります。その原因は自分自身にあり、任せ方やフォローアップの方法に問題があったと痛感しました。 動機づけはどう感じる? 大切なポイントとして、まず動機付けが挙げられます。やる気や意義、納得感を醸成するために、問いかけの工夫が必要だと感じています。また、6W1Hという具体的な視点を取り入れることで、会話をより明確に進めることができると実感しました。さらに、ゴールや期待値を定量的に設定し、認識を合わせることも重要な要素です。 課題はどこにある? 経営層から降りてきた課題や、日々の業務で発生する問題に対して、対象のメンバーへエンパワメントを行う考え方も再度学びました。これまでエンパワメントに努めてきたつもりでしたが、具体的な進め方や定量的なゴール設定が十分ではなかったと気づかされました。特に一年を通じたゴール設定は意義深く、具体的かつ定量的に行っているものの、日々の業務においては「忙しさ」を理由に十分な議論ができていなかった点が反省点です。 対話で何を引き出す? 今後は、1on1の時間を有効に活用し、相手に問いかけながらコミュニケーションを図りたいと考えています。具体的には、「どうしたらより良くなるか」「解決すべき課題は何か」「業務上の問題点はないか」といった質問を通じて、メンバーの意見やアイデアを引き出すことに注力します。同じく、6W1Hや定量的なゴールを意識しながら、進め方や完了の目安についてお互いにすり合わせを行う予定です。 称賛でどう盛り上がる? また、週一回のチームミーティングの中で、各メンバーの取り組みを称賛し合う時間を意図的に設けることも大切だと感じました。行動を皆で称えることで、目標達成時の満足感が向上し、次のチャレンジへの自信を深めてもらえると考えています。

戦略思考入門

視野を広げ、判断軸を築く方法

視野の広さはどう? 日々の業務において、自分が視野狭窄になっていないかどうかが印象的なテーマとして心に残りました。私はこれまで、社内外の大きな声や短期的な効果を重視しすぎた結果、大局的に物事を見る余裕を失い、自分の判断軸を持てない場面が何度もあったと感じています。 本質はどう掴む? 物事の本質を見極め、目標を効果的に達成する方法をシステマチックに考えることが重要だと学びました。そのためには、直観に頼るのではなく、フレームワークを活用してシステマチックに考えることが求められます。正しい知識をもとにフレームワークを正しく使用することで、戦略的思考を習慣化することができると感じました。 意識するコツは? また、MTGやプレゼン・資料作成において学んだことをアウトプットする機会がたくさんあります。実際の業務で以下のポイントを意識しています。 - 経営者の視点で物事を考えること。大局的に中長期的な効果を見据えた判断や言動を心掛ける。 - ジレンマを過度に恐れない。整合性の取れたものが必ずしも最適解であるとは限らず、粘り強くアイデアを考える。 - 人の意見をしっかり聞く。関係者と話し合い、広い視野を持つことが大切である。 分析と整合性は? プレゼンや資料作成の際に、以下のポイントを意識しています。 - 中長期的視点でゴールを明確にする。 - 現状分析として、3C分析やSWOT分析を活用する。 - 設定したゴールと現状分析の結果に整合性が取れているかを確認する。 - 顧客の設定(対象と非対称の選別)を行い、「やるべきこと」を絞り込む。 - 他者と意見交換を行い、集合知を活用し、その後の業務を円滑に進める関係性を築く。 判断軸はどう? これらの手順を踏むことで、自分の判断軸をぶれさせない自信に繋がると考えています。また、得た知識に流され、本質を見失わないように常に注意しています。

リーダーシップ・キャリアビジョン入門

みんなの力を引き出すエンパワメント

エンパワメントは何を意味? エンパワメントとは、目標を明確に示しながら、メンバーの自立性を促す手法です。上司は自らの権限を委譲し、育成や必要なコントロールを行いながら、活動するための環境を整えます。 目的やビジョンは? この手法を実践する際には、まず目的やビジョンの共有を行い、対象者をしっかり把握することが重要です。そのうえで、やや長期にわたる仕事を適切に付与し、動機づけとコーチングを通して実行支援を行います。ただし、エンパワメントが向く業務と向かない業務があるため、余裕を持つことも忘れてはなりません。 動機づけの秘訣は? 動機づけやコーチングでは、内発的動機を鼓舞することが求められ、一方的な指示とならないよう注意が必要です。こうした配慮をもとに、しっかりとコミュニケーションを取り、表面的な理解に終わらないよう確認することが大切です。 計画はどう立てる? また、計画を立てる際は6W1H(Why、Who、When、What、Whom、How、What if)を常に意識して、リスク対策も含めた具体的なプランニングを心がけています。 教訓とは何か? 実践を通して学んだ大きな教訓としては、問いかけややりとりによって相手の理解度を見極め、迅速に適切な支援方法を判断する点が挙げられます。さらに、適度な挑戦を促し、具体的かつ定量的な目標設定を行い、意味ある成果とねぎらいをもって本人の積極参加を引き出すこと、そして不安要素が見受けられる場合には即座に深堀りして対処することの重要性を実感しました。 自己課題は何ですか? 自分自身は、相手の話に耳を傾けるものの、つい話題を次々と先に進めてしまう癖があると感じています。そのため、話の中で深堀りすべき要素に気づき、部下への動機づけや不安の解消、そして必要な支援の見極めにつなげられるよう、今後も意識していきたいと思います。

データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。
AIコーチング導線バナー

「対象 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right