マーケティング入門

競合を超える新市場への挑戦と学び

商品に新たな用途を見つけるには? 今週の事例では、既存の商品に新たな用途を見つけることで新しい市場を開拓したことが印象的でした。また、別の事例ではポジショニングの軸を巧みに設定し、新市場を発見したことに学びがありました。これにより、既存の商品でもポジショニング・ターゲティングを変えることで、新たな顧客層や市場に参入できることを理解しました。 自社での新価値創出の難しさとは? しかし、これを自社に置き換えて考えると、他社には真似できない複数の強みから新たな価値を生み出し、新市場に参入することの難しさを実感します。ターゲティングに成功したY社や、手軽に挽きたて珈琲を購入できるポジショニングでヒットしたS社の事例を通じて、ポジショニングとターゲティングの重要性がさらに理解できました。 差別化と新用途のチャンス 多くの競合が存在する中で、自社の商品は異なり差別化はできているものの、その競合と同じポジショニングをとっています。差別化ができているからこそ、新しい用途を生み出し、新しい価値でこれまでにない市場に参入するチャンスがあると感じました。このため、ポジショニングマップと訴求ポイントを深堀し、まずはテスト的に自分の顧客を対象に実践してみたいと思います。 どんなターゲット層を狙うべき? 具体的には、大手コンビニから地域のコンビニ、都市部や田舎のコンビニまで、どのような商品陳列でどのターゲット層を重視しているかを確認する必要があります。そして、自社商品の新たな用途がないか?そのターゲット層に向けたリーチ方法が本当に適切か?を深く議論していきます。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

クリティカルシンキング入門

ビジネスの課題解決力が驚くほど向上した方法

分解手順を学ぶ意義は? 分解の手順について学んだことで、ビジネスモデルの検討やプレゼン資料の作成が大いに改善されました。 効果的なビジネスモデル検討法 まず、ビジネスモデルの検討では、これまでは漠然とサプライチェーンやバリューチェーンの軸で考えていましたが、層別分解を導入することでより具体的に検討できるようになりました。この方法では全体を定義し、それをMECEに分解して視覚的に図示することで、漏れや重複が無いか確認します。具体的には、層別分解、変数分解、プロセス分解という手法を用い、それぞれの分解結果を俯瞰することで新たな発見が得られることが多々ありました。 プレゼン資料改善の鍵は? 次に、プレゼン資料の作成についてです。全体像を定義し、それを具体的な内容に落とし込む際に、MECEの考え方をしっかりと取り入れました。その結果、伝えるべきポイントをより明確に整理することができ、聞き手にとって理解しやすいプレゼンテーションになったと感じています。 日常での分解思考の鍛え方 また、日常の中でも分解思考のクセをつけるために、通勤中に目に入る店を様々な観点で分解する練習を行っています。業態やターゲット層、営業時間、品揃えの重点など、仕事とは関係ない対象で練習することで、分解するスキルが向上しました。 分解がビジネスに与える影響とは? 全体像を言語化し、その後視覚的に分解項目を視える化する過程を実践することで、物事を多角的に捉える力が養われました。結果として、ビジネスにおける課題解決の精度が向上したと実感しています。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

クリティカルシンキング入門

課題を見極め、戦略を描く

なぜ分析が必要? 今週の学習では、ケースを通じて課題を特定し、解決策を導くための分析の流れや、グラフによる可視化の方法について考えることができました。特に、「課題解決に向けて、どの分析対象を選び、どのように可視化するか」を具体的に把握し、言語化・整理する難しさを強く実感しました。一見シンプルに見える分析やグラフ作成にも、明確な目的と意図が求められるため、「なぜそのデータを選んだのか」「なぜその形式で示したのか」を一つひとつ理由づけることが、説得力のある資料作成や意思決定支援へ繋がると考えています。 実践はどのように? これまで業務課題を解決する際に、「イシューの特定と分解」や「課題ごとの解決策の立案」、そして実現可能かつ効果的な施策の選定と実行というプロセスに十分に向き合えていなかったと感じています。現在、戦略立案の担当として自社の施策の検討・実行が求められる中、まずは適切なイシューを見極め、正確に分解した上で、実行可能性と効果を見据えた施策に落とし込む一連の流れを、今後より意識的に実践していきたいと思います。 思考力をどう鍛える? 今回学んだクリティカルシンキングの基礎を業務の中で意識的に取り入れることが、学びを深めスキルの定着に不可欠であると実感しました。入門編として体系的に学ぶ機会を得たことで、今後は書籍なども活用しながら継続的な学習に取り組み、クリティカルシンキングの実践力をさらに高めていきたいと考えています。業務においてもこの思考法を取り入れ、より良い意思決定や戦略立案に貢献できるよう努めていきます。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

デザイン思考入門

共感と対話で紡ぐ改善の軌跡

他部署の観察は? 前週は実際に担当しているプロジェクトに当てはめて振り返りを行いましたが、今回はより身近な状況に置き換えて考えました。業務上、他部署と協力する場面が多く、時には意見が異なることもあります。そのため、まずは他部署の人たちの行動を観察し、どこに課題があるか、本質的な問題は何かを仮説立てました。その仮説を基に、まず自分の行動をプロトタイプとして変えることにし、他部署の反応を見て改善していくプロセスを考えました。 ミーティングで何が起きた? 次に、ミーティングの内容や他メンバーへの対応から、各人の目的や抱える課題を推測しました。自分だけでなく、上司や自部署のメンバーの行動も変える必要があると感じたため、まず自部署のメンバーに推測した課題を伝え、意見を交わしました。人の行動を変えるためには、相手の行動や感情に共感し、自部署全体での改善に取り組むことが重要だと思います。プロジェクト単位の調整よりも、日々のコミュニケーションの中で、短期間に多くの改善プロセスが求められる点が大きな特徴です。 共通項目は見えた? また、人を観察し、インタビュー内容を通じて共通する項目を見出すことで、課題として定義することが大切だと感じました。インタビュー設計のポイントは、必要十分な対象者から意見を収集できているかどうかにあります。多くの対象者にアンケートを行い、その中から共通の傾向を見出して、インタビュー対象を絞り込むというアプローチは一つの方法として有効です。他にも効果的な手法があれば、ぜひ取り入れたいと思います。

デザイン思考入門

枠を超えるシニアの発想革命

SCAMPERはどう効く? シニア社員のモチベーション向上を目指し、SCAMPERの手法を適用してみました。まず、Sの観点ではスポーツ分野のカウンセリングに類似したアプローチを用い、Cではカウンセリングメニューとの組み合わせを工夫しました。 各手法の意図は? さらに、Aでは僧侶の説法を応用することで新たな視点を取り入れ、Mではモチベーションが下がっているシニア社員を集め、意見交換の場を設けました。Pの段階では学術的な視点から指導を行い、Eでは宴席を設けることで、参加者それぞれの本音を引き出すことに努めました。最後のRでは、一定の指示を強制的に実施する手法を試してみました。 条件にとらわれない? この取り組みでは、問題解決の方法を必要性だけにとらわれず、前提条件に頼らずに幅広い視点で考えることの大切さを学びました。また、施策が対象者に満足感をもたらすかどうか、対象者の気持ちに寄り添って検討することが重要であると感じました。形式や方法に囚われず、自由な発想で取り組む姿勢も求められると実感しました。 デザイン思考の効果は? さらに、デザイン思考については、チームワークの活性化に寄与する技法として大変意義深いと感じました。特に、チームメンバーのアイデアを否定せず、常に視覚化してタイムリーに共有することで、全体の創造性を高められるという点に気づかされました。また、他業界や他分野に広く関心を持ち、豊かな語彙力を活用してアイデアを具体的に言語化することが、今後の課題解決においても重要であると感じました。

戦略思考入門

シンプル判断が切り拓く未来

戦略思考ってどう捉える? 戦略思考というと複雑なイメージを抱いていましたが、実際には「やる・やらない」の取捨選択というシンプルな側面があると改めて気づかされました。競争においては、いかに勝つかに意識が向きがちですが、まずは戦わずして勝つ方法を探ることが、継続して勝ち続けるための近道だと感じました。明確な目標がなければリソースの無駄遣いに繋がり、変化の激しい現代では遅れをとる原因となります。そのため、長期的な視点に立った目標設定が重要です。また、状況を読み、相手や自分の強みや独自性を見出すことが、競争に勝ち続けるための大きな武器となります。 金融支援はどう考える? 戦略的思考は、金融支援制度の見直しや設計といった実務にも役立つと考えます。現在および将来的な時流、全体の方針、利用可能なリソースを踏まえ、どのような支援が本当に必要か、また支援すべき事業をどのように取捨選択するかが求められています。すべてを支援対象にすることは不可能なため、業界内の自発的な競争に任せる部分と、支援すると大きな意義があり真に必要な事業を見極めることが鍵です。並行して、他の支援策との重複や役割分担にも注意を払い、自身の独自性や強みを構築していく必要があります。 最短ルートは何? やる・やらないの判断を下すためには、まず多くの選択肢を用意することが重要です。二手先、三手先を見据え、視野を広げるための取り組みも必要不可欠です。こうした判断や経路の選定が、どの時点で最短といえるかについては、一定の経験が必要であると感じます。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

「対象 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right