マーケティング入門

競合を超える新市場への挑戦と学び

商品に新たな用途を見つけるには? 今週の事例では、既存の商品に新たな用途を見つけることで新しい市場を開拓したことが印象的でした。また、別の事例ではポジショニングの軸を巧みに設定し、新市場を発見したことに学びがありました。これにより、既存の商品でもポジショニング・ターゲティングを変えることで、新たな顧客層や市場に参入できることを理解しました。 自社での新価値創出の難しさとは? しかし、これを自社に置き換えて考えると、他社には真似できない複数の強みから新たな価値を生み出し、新市場に参入することの難しさを実感します。ターゲティングに成功したY社や、手軽に挽きたて珈琲を購入できるポジショニングでヒットしたS社の事例を通じて、ポジショニングとターゲティングの重要性がさらに理解できました。 差別化と新用途のチャンス 多くの競合が存在する中で、自社の商品は異なり差別化はできているものの、その競合と同じポジショニングをとっています。差別化ができているからこそ、新しい用途を生み出し、新しい価値でこれまでにない市場に参入するチャンスがあると感じました。このため、ポジショニングマップと訴求ポイントを深堀し、まずはテスト的に自分の顧客を対象に実践してみたいと思います。 どんなターゲット層を狙うべき? 具体的には、大手コンビニから地域のコンビニ、都市部や田舎のコンビニまで、どのような商品陳列でどのターゲット層を重視しているかを確認する必要があります。そして、自社商品の新たな用途がないか?そのターゲット層に向けたリーチ方法が本当に適切か?を深く議論していきます。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

クリティカルシンキング入門

ビジネスの課題解決力が驚くほど向上した方法

分解手順を学ぶ意義は? 分解の手順について学んだことで、ビジネスモデルの検討やプレゼン資料の作成が大いに改善されました。 効果的なビジネスモデル検討法 まず、ビジネスモデルの検討では、これまでは漠然とサプライチェーンやバリューチェーンの軸で考えていましたが、層別分解を導入することでより具体的に検討できるようになりました。この方法では全体を定義し、それをMECEに分解して視覚的に図示することで、漏れや重複が無いか確認します。具体的には、層別分解、変数分解、プロセス分解という手法を用い、それぞれの分解結果を俯瞰することで新たな発見が得られることが多々ありました。 プレゼン資料改善の鍵は? 次に、プレゼン資料の作成についてです。全体像を定義し、それを具体的な内容に落とし込む際に、MECEの考え方をしっかりと取り入れました。その結果、伝えるべきポイントをより明確に整理することができ、聞き手にとって理解しやすいプレゼンテーションになったと感じています。 日常での分解思考の鍛え方 また、日常の中でも分解思考のクセをつけるために、通勤中に目に入る店を様々な観点で分解する練習を行っています。業態やターゲット層、営業時間、品揃えの重点など、仕事とは関係ない対象で練習することで、分解するスキルが向上しました。 分解がビジネスに与える影響とは? 全体像を言語化し、その後視覚的に分解項目を視える化する過程を実践することで、物事を多角的に捉える力が養われました。結果として、ビジネスにおける課題解決の精度が向上したと実感しています。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

クリティカルシンキング入門

課題を見極め、戦略を描く

なぜ分析が必要? 今週の学習では、ケースを通じて課題を特定し、解決策を導くための分析の流れや、グラフによる可視化の方法について考えることができました。特に、「課題解決に向けて、どの分析対象を選び、どのように可視化するか」を具体的に把握し、言語化・整理する難しさを強く実感しました。一見シンプルに見える分析やグラフ作成にも、明確な目的と意図が求められるため、「なぜそのデータを選んだのか」「なぜその形式で示したのか」を一つひとつ理由づけることが、説得力のある資料作成や意思決定支援へ繋がると考えています。 実践はどのように? これまで業務課題を解決する際に、「イシューの特定と分解」や「課題ごとの解決策の立案」、そして実現可能かつ効果的な施策の選定と実行というプロセスに十分に向き合えていなかったと感じています。現在、戦略立案の担当として自社の施策の検討・実行が求められる中、まずは適切なイシューを見極め、正確に分解した上で、実行可能性と効果を見据えた施策に落とし込む一連の流れを、今後より意識的に実践していきたいと思います。 思考力をどう鍛える? 今回学んだクリティカルシンキングの基礎を業務の中で意識的に取り入れることが、学びを深めスキルの定着に不可欠であると実感しました。入門編として体系的に学ぶ機会を得たことで、今後は書籍なども活用しながら継続的な学習に取り組み、クリティカルシンキングの実践力をさらに高めていきたいと考えています。業務においてもこの思考法を取り入れ、より良い意思決定や戦略立案に貢献できるよう努めていきます。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

デザイン思考入門

枠を超えるシニアの発想革命

SCAMPERはどう効く? シニア社員のモチベーション向上を目指し、SCAMPERの手法を適用してみました。まず、Sの観点ではスポーツ分野のカウンセリングに類似したアプローチを用い、Cではカウンセリングメニューとの組み合わせを工夫しました。 各手法の意図は? さらに、Aでは僧侶の説法を応用することで新たな視点を取り入れ、Mではモチベーションが下がっているシニア社員を集め、意見交換の場を設けました。Pの段階では学術的な視点から指導を行い、Eでは宴席を設けることで、参加者それぞれの本音を引き出すことに努めました。最後のRでは、一定の指示を強制的に実施する手法を試してみました。 条件にとらわれない? この取り組みでは、問題解決の方法を必要性だけにとらわれず、前提条件に頼らずに幅広い視点で考えることの大切さを学びました。また、施策が対象者に満足感をもたらすかどうか、対象者の気持ちに寄り添って検討することが重要であると感じました。形式や方法に囚われず、自由な発想で取り組む姿勢も求められると実感しました。 デザイン思考の効果は? さらに、デザイン思考については、チームワークの活性化に寄与する技法として大変意義深いと感じました。特に、チームメンバーのアイデアを否定せず、常に視覚化してタイムリーに共有することで、全体の創造性を高められるという点に気づかされました。また、他業界や他分野に広く関心を持ち、豊かな語彙力を活用してアイデアを具体的に言語化することが、今後の課題解決においても重要であると感じました。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

仮説が導く多角的学びの扉

仮説はどう考える? 仮説を考える際は、決め打ちにせずに複数の視点から仮説を立てることが大切です。仮説同士に網羅性を持たせるため、異なる切り口で検討を行い、検証時には何を比較基準にするかを意識的に選ぶようにしましょう。 データはどう集める? データを収集する際には、対象者が意味のある情報源であるか、またどのような方法(アンケート、口頭など)で情報を得るのかを考慮してください。比較対象となるデータを収集することを忘れず、都合の良い情報だけでなく、反論となる情報も取り入れて検証するように意識します。 仮説はどう分類? 仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大きく分類され、時間軸(過去・未来・将来)によってその中身は変わっていきます。 過去データで発見? たとえば、過去に掲載していた販売サイトのアクセス数やコンバージョン率を再確認することで、当時気づかなかった新たな発見が得られるかもしれません。担当していなかった時期のデータでも、改めて見返すことで仮説を生み出す練習ができます。また、メールマガジンのクリック率や流入ページ、ページビュー数なども注目すべき指標です。 多角的検討は必要? これまで、思いついた仮説に合致する情報を優先的に探していたかもしれませんが、仮説が決め打ちにならないよう、複数の視点から網羅的に検討する意識が求められます。What、Where、Why、Howの各要素に落とし込んだうえで、プロセス通りに漏れなく検討していくことを心がけましょう。

「対象 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right