データ・アナリティクス入門

仮説検証で広がる実務の可能性

仮説思考の基盤は? 仮説思考の重要性を実感しました。まずは、問題解決のために仮説を立て、その仮説が正しいかどうかを検証するためのデータを収集するという基本プロセスが、結論を導くための確かな基盤になると感じました。 複数仮説の選び方は? また、複数の仮説を最初に立て、その中から有力なものを選別していく方法は、柔軟かつ多面的なアプローチを可能にします。さらに、仮説を立てる際には、3Cや4Pなどのフレームワークを活用することによって、問題をあらゆる角度から捉え、具体的なデータ収集の方法(既存のデータの活用や新たなデータの収集)の選択にもつながることを学びました。 実務活用のポイントは? この学びを活かすことで、実務においても課題の原因究明や効果的な打ち手の検討に役立てることができると感じました。

クリティカルシンキング入門

問いの力で広がる学びの扉

「問い」をどう捉える? 「問い」にフォーカスしている点がとても印象に残りました。この「問い」を生み出すためには、物事を多角的に捉える視点が必要であると感じます。たとえば、WEEK1で学んだ内容が実際に活かされるという点から、さまざまな見方を取り入れる重要性と、それに伴う言語化のスキルも求められていると実感しました。 資料作りはどう進める? 今後、提案資料や報告資料を作成する際には、今回学んだ視点の多様性と言語化の技術を活かしたいと考えています。客観的で説得力のある資料作成には、顧客の多様な立場(経営層や現場担当者など)だけでなく、自社内のさまざまな視点も取り入れることが必要です。また、他者が作成した資料をチェックする際にも、これらの点を意識し、課題解決に役立つ情報提供ができるよう努めたいと思います。

データ・アナリティクス入門

数字が語る成長ストーリー

どの指標で問題解決? 顧客の行動をクリック率やコンバージョン率などの定量的指標で捉えることで、どのステップに主な問題があるかを把握できる点が非常に参考になりました。このアプローチにより、各プロセスのボトルネックを明確にし、改善点を正確に捉えることが可能となります。 点数化と離脱はどう? また、各項目を点数化して意思決定を行う方法は大変勉強になりました。各指標にはそれぞれ長所と短所があるものの、複合的に判断することで、優先事項の認識を合わせ、定量的な基準を共有できると感じました。さらに、顧客がどのステップで離脱しているのかをファネルの視点から整理する手法は、成果に結び付けるための具体的なアクションプランを立てる上で非常に有用であり、今後の分析や社内での課題解決の手法として周知したいと考えています。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

戦略思考入門

理論と実践で磨く戦略力

戦略思考はどこに効く? 戦略的な思考方法を体系的に学ぶことができ、実践を重ねることでフレームワークの理解が深まりました。講座で得た知識は、単にビジネスシーンだけでなく、自己分析にも有効であり、今後のビジネスプランを構築する際に大いに役立てていきたいと感じています。 部署立て直し戦略は? まずは、自分の部署の立て直しにこのフレームワークを活用する計画です。自社の理解を深め、企業のゴールを踏まえた上で、部署の目標設定と現状把握を行います。自分自身で課題を見つけ、解決策を考えた上で、その考えをスタッフとも共有し、各自に現状把握から課題発見と解決策の検討を促していきます。 工数削減効率向上は? また、契約上の人月がマイナスである現状を踏まえ、工数を削減することで業務の効率化に取り組む予定です。

クリティカルシンキング入門

イシュー活用で未来を創る

イシューはどう見極める? 問題や課題を解決するには、まずイシューを特定することが大切だと学びました。イシューは、見る角度や考え方によって様々な切り口で設定できるため、目の前にある問題を多角的に分析し、考えうるイシューを洗い出すことが重要です。その上で、状況や環境、優先事項を踏まえ、どのイシューに注力すべきかを見極める必要があると実感しました。 直感に頼らない方法? また、チームの管理職として日々の業務で課題に直面する中、これまでは自身の経験や直感に頼った対応が多く、時としてその効果に限界があることを感じていました。今回の学びを活かし、今後はクリティカルシンキングの手法を用いて、多角的に要因を分析・洗い出し、上司や部下と議論しながら、最も効果的な解決策を選定して実践していきたいと考えています。

データ・アナリティクス入門

仮説が未来を切り拓く瞬間

仮説はどう整理する? 今まで学んだ内容をもとに、課題全体を通して「どうありたいか」や「何を解決したいのか」という視点から仮説を立てる過程を振り返ることができました。どのデータを、どう活用するかを考えながら、仮説を検証し精緻化していくストーリーは非常に有意義でした。また、目の前の問題にすぐに飛びつく癖を見直し、一旦判断を保留することで、どの判断を支える根拠が必要か改めて考える大切さを実感しました。 データはどう伝える? さらに、メンバーや上司への働きかけにおいては、自分がどうありたいかを明確に示し、その意図を支える根拠としてデータに基づいた事実を示すことで共感を得たいと考えています。今回の学びを活かし、限られた人員で10%の作業増に応えるための具体的な施策に取り組んでいきたいと思います。

データ・アナリティクス入門

多角分析で見つける新たな発見

復習は十分でしたか? 総合演習を進める中で、実際にデータに基づいた分析を具体的に行うことで、これまで学んできた内容をしっかりと復習できたと感じています。また、自分一人では考え付かない多様な回答に触れることで、大変勉強になりました。 多角的検証はどう? データを単に見るだけではなく、様々な切り口で検証することにより、隠れた課題に気付くことができた点も大きな収穫です。その経験から、問題を多角的に把握する重要性を実感しました。 結論頼りは危険? 一方で、低採算などの課題に直面する際、どうしても思い込みや結論ありきになりがちであると感じました。今後は、課題解決のプロセスを重視し、客観的に全体を俯瞰した上でデータ収集と分析を行い、誰もが判断しやすい行動を心がけていきたいと考えています。

デザイン思考入門

実務に効く!学びの発見術

経営戦略って何かな? 今回の講義では、普段気付かなかった経営の視点や戦略の考え方を学ぶことができ、とても充実した時間を過ごすことができました。講義内容が実践的で、自分自身の業務や考え方にすぐに取り入れられる点が特に印象的でした。 教材はどのように活かす? また、受講中に提供される資料や課題を通じて、問題解決のプロセスを具体的かつ体系的に理解することができました。講師の話し方や解説も分かりやすく、内容が自然に頭に入ってくる工夫が随所に感じられました。 学びはキャリアにどう? 個々の事例や演習を通じて、自らの業務への応用可能性を実感できたことは、今後のキャリア形成に大いに役立つと確信しています。今後もこうした学びの場を通じて、自己成長を続けていきたいと感じました。

データ・アナリティクス入門

焦らずじっくり、物語で解決

どの結果を目指す? 分析に取り組む際、すぐに手をつけがちですが、まずは結果をイメージし、どのようなストーリーで進めるかを考えることが非常に大切だと感じています。What、Where、Why、Howの各視点を意識することで、問題解決へのアプローチが明確になると思います。 焦らず目的は何? また、分析業務の増加に伴い、結果を急ぐあまり焦ることがありました。しかし、焦るのではなく、目的を明確にし、ストーリー構築に十分な時間をかけるべきだという考えに至りました。これまでは十分な計画を立てずに作業を進めた結果、自分の苦手な部分が露呈していたと実感しています。 広い視野で挑む? 今後は、課題解決に向けた仮説の設定やストーリーの構築を、より広い視野で取り組んでいきたいと考えています。

クリティカルシンキング入門

広い視野とクリティカル・シンキングで問題解決に挑む方法

マーケティングで必要なスキルは? マーケティングにおいて、広い視点・視野・視座で物事を判断するスキルは必須能力だと感じています。特に、マーケティングの根幹であるインサイト理解や顧客ニーズの把握には、論理的思考を用いることでより具体的な仮説を立てられると思いました。 タスクへの取り組み方をどう見直す? 日々のタスクにおいては、なぜそのタスクを行うのか、課題は何なのかを問いの形でイシューを設定し、納得できる答えを探す取り組みを繰り返していきたいと考えています。このようにしてクリティカル・シンキングを自分のスキルとして浸透させたいと思います。 資料作成で心がけるべき点は? 資料作成やコンテンツ制作の際には、第三者に伝わりやすい見た目や内容、文章を意識して取り掛かりたいです。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。
AIコーチング導線バナー

「課題 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right