データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

マーケティング入門

お客さまの本音を引き出す力

顧客志向はなぜ大切? 顧客志向でプロセスを構築することの大切さを学びました。顧客自身が気づいていない欲求や、さらに求める+αの価値を引き出し、それを実現するための方法を検討し提案する必要があります。真のニーズを発見し、それを満たす際は自社の強みを活かすことで、他社との差別化が可能となる点が印象的でした。 ネーミングの魅力は? また、ネーミングの重要性にも触れられており、覚えやすくキャッチーな言葉であること、そして口にしたときに心地よさを感じられる点が理想とされます。実現手法としては、STPやAIDMAなどのフレームワークを用い、社内での合意形成にも十分に注意する必要があると学びました。何より最後に、常に顧客目線を持つことが重要であると再確認しました。 自動車業界で何を重視? 自動車業界での商品開発の現場においては、顧客がどこに強いペインポイントを感じているのかを深く検証することが求められます。現在検討している製品や機能が、顧客にとって実際に価値があるものかどうか、または他にもっと重要な課題がないかを見極めることが大切です。検証の手法や必要なデータについても改めて考える良い機会となりました。 異業種交流で何を掴む? さらに、異なる業種や業界のメンバーとのグループワークを通じ、自分の考え方や癖を再認識することができました。さまざまな価値観や考え方に触れることで、その背景にある理由や経験を深く掘り下げることができたのが非常に有意義でした。

戦略思考入門

選択と集中が生む、企業変革の鍵

慣例を捨てる意識を再確認 事業や業務において「捨てる」ことは、「慣例」や「定型」に拘らないことだと意識していましたが、今回の学習を通じて無意識のうちに「慣例」や「定型」に捉われていたと気づかされました。個人で「捨てる」ことは容易ですが、組織として「捨てる」ことは意識的に取り組む必要があり、論理的なストーリーを立てて進める必要があると再認識しました。「ムダじゃない?」や「意味はない」では他の社員は納得してくれず、腹に落ちないことを肝に銘じておきたいと思います。 プロジェクトへの想いと捨てる決断 IT業界では参画したプロジェクトに長期間携わることが多く、顧客やプロジェクトに対する想いが強くなりがちです。事業領域を選択と集中(捨てる)する際には、参画メンバーの心情も考慮する必要がありますが、メンバーの意識や想いを重視することはできません。トレードオフを念頭に置きながら、検討・計画・実行していきたいと思います。また、客観的な判断を行うために数値をベースにして取り組んでいく必要があります。 トレードオフの検討にどう向き合う? トレードオフを検討するにあたり、売上高や利益、一人当たりの売上高や利益、投下コストなどの生産性指標を把握し、社員にも示せるように準備を進めます。数値をベースに社員の意見も取り入れた上で判断し、上層部への提案を行っていくつもりです。現在、中期計画や短期事業計画の策定に携わっており、事業領域の検討にこれらを取り入れて進めていきます。

リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

マーケティング入門

マーケティングの本質を学んで売上アップへ

マーケティングの魅力と怖さ どんなに良いものを作ったとしても、顧客の心理をついた魅せ方にしなければ、いまいちな売れ行きになることがある。これがマーケティングの面白い部分でもあり、怖い部分であると感じた。カレーメシの例題を通じて、イノベーションの普及要件について分かりやすく理解することができた。今後、新商品のアイディアを考える際には、これらの要件に当てはめてみて判断していきたい。 顧客視点の重要性とは? また、差別化の罠にはまり、競合ばかりを意識してしまうことがよくあるが、自身もそうなりがちだと思った。これを防ぐためには、今一度顧客視点で見る意識を持ち続けたいと思う。 アイディアをどう高める? 新商品や新技術のアイディアを考える際に、顧客心理をついた視点を入れることで、より確度を高めることができる。また、商品開発におけるマーケティング部とのやりとりの際も、魅せ方を考慮した上での協議や提案が可能となり、ヒット商品を生み出す可能性が高まるだろう。 ヒットの条件を探るには? 過去に自社製品で販売したものの中から、ヒットしたものやあまりヒットしなかったものをそれぞれ抽出し、普及要件に合致していたか確認してみる。また、どのような魅せ方であればヒットする可能性があったのかについても検討してみる。そのほか、ネットショッピングで売れていない商品を見つけ、なぜ売れていないのかについても深掘りしてみる。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

データ・アナリティクス入門

問題解決で差がつく!実践の一歩

問題解決の重要性とは? 問題を特定し、要素を分解することについて、普段の業務ではそれほど深く考えず、安易に解決方法を決めてしまっていると痛感しました。問題箇所を解決した場合の理想像への影響度を検討することは重要であり、これは顧客への提案時にそのまま費用対効果として役立ちます。その結果、より効果的で説得力のある提案ができるようになると感じました。 理想像の共有方法は? また、理想像を定量的に判断できる指標として変換し、関係者と合意することも重要です。最初の問題設定で認識のズレが生じると、後からプロジェクトの方針が社内外の関係者と異なってしまうことがあります。今後は、認識のズレが起こらないように注意して取り組みたいと思います。 認識のズレをなくすには? 問題点や課題の設定を誤る場面が多いことに気づきました。社内の関係者間でも微妙に異なる捉え方をしているケースがあるため、理想像を定量的に指標化し、関係者と合意することを今後の業務で活用したいと考えています。 DX化推進での課題は? さらに、企業のDX化を推進する場面では、「どこに問題があるのか」や「なぜ問題が起きたのか」で、「人間の質」が問題となることが多々あります。これまではそのような問題に対する解決方法を提案することが難しかったのですが、今後は問題をさらに深く分解し、捉え方を変えることで解決策が見つかるかもしれないと思いました。

クリティカルシンキング入門

もう一人の自分と真剣対話する学び

視点は何故多様? クリティカルシンキングでは、自分の思考をチェックする「もう一人の自分」を育てること、さまざまな視点から物事を見る「3つの視」、そしてMECEの観点で分解することが重要だと学びました。自分自身の思考の癖を把握し、その判断が本当に正しいのか、ほかの視点はないのか、また情報に漏れや重複がないかを常に考えることが求められます。これを鍛えるために、「具体と抽象」のフレームを活用し、日常生活の中で繰り返しトレーニングすることが必要だと理解しました。 意見はどう比較? また、メンバーから提案があった場合や判断を迫られる状況では、単純に意見に流されたり短絡的に判断するのではなく、本当にそれが妥当なのか、組織にとって最善の選択は何か、あるいはほかにどんな選択肢があるのかを検討する姿勢が大切です。特に、複数の回答を用意し、それぞれのメリットとデメリットを比較考慮した上で最適な判断を下すことが重要だと感じています。 別の方法は? さらに、常に多角的な視点で物事を考える習慣を身につけるため、身近なものについて「なぜそうなっているのか」「より良くするためにはどうすればよいのか」「もし全く別の方法に置き換えるとしたらどうなるか」を考えてみる訓練を継続することが求められます。業務においても、まず目的を明確に意識し、その上で他の方法で実現できないかを検討するアプローチが有効であると実感しています。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

「提案 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right