リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

マーケティング入門

マーケティングの本質を学んで売上アップへ

マーケティングの魅力と怖さ どんなに良いものを作ったとしても、顧客の心理をついた魅せ方にしなければ、いまいちな売れ行きになることがある。これがマーケティングの面白い部分でもあり、怖い部分であると感じた。カレーメシの例題を通じて、イノベーションの普及要件について分かりやすく理解することができた。今後、新商品のアイディアを考える際には、これらの要件に当てはめてみて判断していきたい。 顧客視点の重要性とは? また、差別化の罠にはまり、競合ばかりを意識してしまうことがよくあるが、自身もそうなりがちだと思った。これを防ぐためには、今一度顧客視点で見る意識を持ち続けたいと思う。 アイディアをどう高める? 新商品や新技術のアイディアを考える際に、顧客心理をついた視点を入れることで、より確度を高めることができる。また、商品開発におけるマーケティング部とのやりとりの際も、魅せ方を考慮した上での協議や提案が可能となり、ヒット商品を生み出す可能性が高まるだろう。 ヒットの条件を探るには? 過去に自社製品で販売したものの中から、ヒットしたものやあまりヒットしなかったものをそれぞれ抽出し、普及要件に合致していたか確認してみる。また、どのような魅せ方であればヒットする可能性があったのかについても検討してみる。そのほか、ネットショッピングで売れていない商品を見つけ、なぜ売れていないのかについても深掘りしてみる。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

データ・アナリティクス入門

問題解決で差がつく!実践の一歩

問題解決の重要性とは? 問題を特定し、要素を分解することについて、普段の業務ではそれほど深く考えず、安易に解決方法を決めてしまっていると痛感しました。問題箇所を解決した場合の理想像への影響度を検討することは重要であり、これは顧客への提案時にそのまま費用対効果として役立ちます。その結果、より効果的で説得力のある提案ができるようになると感じました。 理想像の共有方法は? また、理想像を定量的に判断できる指標として変換し、関係者と合意することも重要です。最初の問題設定で認識のズレが生じると、後からプロジェクトの方針が社内外の関係者と異なってしまうことがあります。今後は、認識のズレが起こらないように注意して取り組みたいと思います。 認識のズレをなくすには? 問題点や課題の設定を誤る場面が多いことに気づきました。社内の関係者間でも微妙に異なる捉え方をしているケースがあるため、理想像を定量的に指標化し、関係者と合意することを今後の業務で活用したいと考えています。 DX化推進での課題は? さらに、企業のDX化を推進する場面では、「どこに問題があるのか」や「なぜ問題が起きたのか」で、「人間の質」が問題となることが多々あります。これまではそのような問題に対する解決方法を提案することが難しかったのですが、今後は問題をさらに深く分解し、捉え方を変えることで解決策が見つかるかもしれないと思いました。

クリティカルシンキング入門

もう一人の自分と真剣対話する学び

視点は何故多様? クリティカルシンキングでは、自分の思考をチェックする「もう一人の自分」を育てること、さまざまな視点から物事を見る「3つの視」、そしてMECEの観点で分解することが重要だと学びました。自分自身の思考の癖を把握し、その判断が本当に正しいのか、ほかの視点はないのか、また情報に漏れや重複がないかを常に考えることが求められます。これを鍛えるために、「具体と抽象」のフレームを活用し、日常生活の中で繰り返しトレーニングすることが必要だと理解しました。 意見はどう比較? また、メンバーから提案があった場合や判断を迫られる状況では、単純に意見に流されたり短絡的に判断するのではなく、本当にそれが妥当なのか、組織にとって最善の選択は何か、あるいはほかにどんな選択肢があるのかを検討する姿勢が大切です。特に、複数の回答を用意し、それぞれのメリットとデメリットを比較考慮した上で最適な判断を下すことが重要だと感じています。 別の方法は? さらに、常に多角的な視点で物事を考える習慣を身につけるため、身近なものについて「なぜそうなっているのか」「より良くするためにはどうすればよいのか」「もし全く別の方法に置き換えるとしたらどうなるか」を考えてみる訓練を継続することが求められます。業務においても、まず目的を明確に意識し、その上で他の方法で実現できないかを検討するアプローチが有効であると実感しています。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

リーダーシップ・キャリアビジョン入門

リーダーシップ向上とキャリア目標への新たな一歩

リーダーシップ再認識の成果は? 自身のリーダーシップについて改めて認識することができ、今後の目標や実践項目を整理する良い機会となりました。特にライブ受講では上司役を務め、相手との思いのギャップを認識し、それを埋める難しさを体験できたのが有意義でした。 キャリア設定とリーダーシップの進化 今回の総まとめを元に、自身のキャリアの再設定と組織でのリーダーシップについて考えました。キャリアについては、5年後や10年後の目標を設定し、そこまでの道筋を具体的に検討していきます。組織全体を理解し、より高い目指す姿を作るためには、他部門の経験が大事だと考え、上司に相談しようと思います。また、リーダーシップにおいては、メンバーとの対話の機会を増やし、相手を理解した上で適性に応じた指示ができるよう心がけます。 どのように経営スキルを強化するか? 次に、自身の経営に関する基礎知識や不足しているスキルを整理しました。グロービス大学院の「ナノ単科」や学び放題動画を活用して基礎知識を高め、今後の方向性を明確にするための計画を8月18日までに策定する予定です。また、自身のスキルアップについても詳細に計画し、2025年3月までにどのように実践するかを整理します。その後、メンバーとの対話を通じて仕事の割当を調整し、適性に応じた割り振りを上司に提案することを目指しています。この計画を8月31日までに実践する予定です。

マーケティング入門

仲間と挑む学びの軌跡

どのように学びを実感? これまでの学びを通じて、WEEK1で掲げたありたい姿を再整理する中で、自分がどのような観点で取り組むかを具体的に言語化する力が身についてきたと感じています。また、仲間とのワークを通して、考えを簡潔に伝える工夫を磨くとともに、他の方の意見に触れることで多くの気付きを得て、自身の知見も深まりました。 どう運営の基本は? 商品プロジェクトを運営する際には、まず誰をターゲットにするか、どこでいくらで販売するか、そしてどのように魅力を伝えるかを明確にすることが基本であると再認識しました。新商品の価値や魅力を分かりやすく提案するだけでなく、既存商品の場合でも、まだ注目されていない魅力や使い方、新しい価値を提案することが肝要です。キャンペーンを検討する前にも、同じくターゲット層、販売場所、価格、魅力の伝え方をしっかり考えることが必要だと実感しています。 期限と目標は? さらに、何をするかを具体的に考え、いつ始めいつまでに終わらせるかを決めることが大切です。これらの行動が、会社や支社、自身の業務の方向性としっかり照らし合わせられているかを確認しながら、常にワンランク上のストレッチ目標を設定して取り組むことが求められます。目標が実現可能であるかをチェックし、上司や同僚に宣言した上で、週に一度、目標と進捗を見直す習慣を身につけることが、より高い成果に結びつくと感じています。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

クリティカルシンキング入門

イシューを見極めて効果的に対策を立てる方法

イシューを明確にするには? 物事を考える際には、まずイシューを明確にすることが何よりも重要であると学びました。イシューを明確にした上で、どのような取り組みを実施すれば良いかを具体的に考える必要があります。イシューを設定する際には、データを様々な切り口から分解してみると、課題がどこにあるかを見極めやすくなります。また、イシューは変化するため、その時々で明確なイシューを設定し、状況に応じた対策を講じることが重要です。 会議での論点確認が必要な理由は? イシューは設定した後も常に意識して確認しておかないと、論点からずれた話し合いになってしまうことがあります。会議が長引いたり、時間内に方向性が決まらないといった場面では、イシューがずれていないかを確認し、立ち戻ることを意識して実践していきたいと感じます。 提案に必要な論理的整理とは? 特に会議の際には、論点からずれた話し合いになっていないか常に確認し、ずれが生じた場合にはメンバーに指摘し、論点に戻ることを心がけたいと思います。また、新規サービスの提案を行う際には、これまではできそうなことややってみたいことから検討していたように思いますが、今後は組織にとっての現状の課題を明確にし、そのためには何をすべきか、その課題を解決したらどのような結果が得られるかを論理的に整理した上で、説得力のある提案を行いたいと考えています。

クリティカルシンキング入門

データ分析で見つけた新たな視点と発見

データ加工の真実は? データの加工によって、見えてくる事実や印象は大きく変わるものです。「数字は嘘をつかないが、詐欺師は数字を使う」との言葉がありますが、まさにその意味を実感しました。情報は、どのように分解するかによって、判明する内容に差が出ます。ただし、最初から適切な区分けを定義することは難しく、仮説に基づいた検討になりがちです。そのため、区分けをできるだけ小さな単位で行い、グラフ化や計算によって傾向を見出すという方法が現実的です。 異軸の関係は? 一つの軸で明らかになった事実を他の軸と結びつける際には、それらの軸がどのような関係にあるのかを考慮する必要があります。全く異なる軸同士の場合、それらを組み合わせて四象限にするなどの工夫が求められます。 ログ分析で何が? 私は現在、自社サービスの顧客の利用状況をログで分析し、利用状況に問題がないか確認する工程に取り組んでいます。その結果に基づき、さらにARPU向上を提案しています。このデータ分析には、今回学んだ分解する観点を活用したいと考えています。 新データの可能性は? 先週、新しい利用状況データを取得できたため、来週にその分析を実施する予定です。この新しいデータは、これまでのものよりも詳細で、分析する軸が多岐にわたります。今回学んだ、複数の軸の関連性を考慮した事実抽出の手法が、大いに参考になりそうです。

「提案 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right