データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

リーダーシップ・キャリアビジョン入門

振り返る!成果と人間性の調和

マネジリアル・グリッド理論で何が重要? マネジリアル・グリッド理論では、業績への関心と人間への関心のバランスが重要であると感じています。特定の型が良いとは限らず、両方の観点を柔軟に持つことが求められるでしょう。私の職場では、結果だけに集中しがちで、人間への関心が低下していると感じました。やる気のない人を放置したり、自分でやった方が早いと考える点についても改善が必要です。 パス・ゴール理論の理解を深めるには? パス・ゴール理論においては、指示型、参加型、支援型、達成志向型の4つの区分があり、それぞれの理解が基本になります。区分にはとらわれず、状況によって臨機応変に対応することが理想的です。部下の適合要因は理解できるものの、環境要因を打破するのは難しいと感じます。 どうすれば人間への関心を高められる? 人間への関心を高めるためには、まず「結果を出す」という視点に加え、個々人の強みを伸ばし生かす視点を取り入れる必要があります。たとえば、参加型の手法を用いて他の意見を取り入れやすいコミュニケーションを心がけることが重要です。また、後輩が質問をしてきた際には、その背景を伝え、考える時間を与えることが大切です。これにより、後輩は自信を持ち、若い視点から新しいアイデアが生まれることを期待できます。 キャンペーン企画での意見収集の重要性 キャンペーン企画の際にも、すべてを自分で決めるのではなく、意見を積極的に収集し、皆で作り上げることで、やらされ感ではなく参加感を高められるように心がけたいと思います。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

クリティカルシンキング入門

データ×想像が生む信頼の伝え方

week5の難しさは? week4までは「自分の伝えたいことを考え抜く」ことの大切さを学びましたが、week5では大量のデータの中から本当に伝えるべき内容を見極める難しさを実感しました。 どう説得力を作る? また、説得力を高めるためには、次の①~③のサイクルを回すことが重要だと感じました。まず①、伝えたい思いを表現する前に、その背景をさまざまに想像します。次に②、その思いがデータによって裏付けられているかを確認し、さらに③、根拠が不足している場合には追加のデータを集めます。こうした手法により、単に閃きに頼るのではなく、しっかりと時間をかけることで、より良い成果が得られると自信が持てました。 サイクルの意義は? ①~③のサイクルをしっかりと回せば、客観的な調査結果や説得力のある行動が浮かび上がり、未知の領域にも効果的にアプローチできると感じています。 大テーマの捉え方は? また、想像するのが難しい大きなテーマに対しても、この手法は効果を発揮します。たとえば、新たなビジネス展開において、どの分野や顧客をターゲットにするか、どのようなアプローチが有効かを見極める場合などです。 計画への活かし方は? ただし、十分な時間をかける必要がある分、定常業務にそのまま適用するのは難しいと考えています。年度方針や中期計画など、じっくり取り組む必要がある場面で活用するのが最適だと思います。現在、今期の計画に取り組むタイミングであり、この学びをしっかりと活かしたいと感じています。

クリティカルシンキング入門

伝わる話し方の秘訣

伝え方は本当に伝わる? 相手に話すとき、自分が頭の中で思い描いている内容が必ずしも伝わるとは限らないと実感しました。普段使っている日本語の基本的な「主語+述語」の構造を見落としがちであることに気づかされ、意識して伝えるようになりました。 必要情報は何だろ? 何かを提案する際、つい多くの要素を並べてしまい、本当に伝えたいポイントがぼやけてしまうことがあります。そのため、必要な情報を厳選し、順序立てて説明することの大切さを学びました。 ピラミッドはどう活用? また、ピラミッドストラクチャーという手法の有用性にも気づきました。トップダウンで問題を掘り下げることで、自分の論理の妥当性を確認しやすくなり、相手も論理に沿った結論を導きやすくなります。 相手に合わせて伝えて? 問題解決や企画提案の際は、解決策として具体的な行動を示すことが多いですが、話す相手の立場によって求められる情報は異なります。相手目線に立ち、何が必要かを取捨選択し、わかりやすい順序で伝える努力が必要だと感じました。 考え整理してますか? さらに、提案する前には自分の考えを整理し、論理の妥当性を確認する習慣が身につきました。上司に相談する前や議論を始める前に、まず自分の中で言いたいことを明確にしておくことが重要だと学びました。 伝える極意は何? 最後に、必要な情報だけに絞って伝えることの重要性も実感しました。余計な要素を並べず、相手が求める情報だけを端的に示すことで、より納得してもらいやすくなると感じています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

クリティカルシンキング入門

多角的視野で自分を磨く学び

共感で成果はどう出る? 戦略的な営業手法として「共感、自分事化させる」アプローチがあります。これまでなんとか成果を上げることができたものの、実際には適切な方法やコーチがいなければ手探りになり、場当たり的な対応に終始してしまい大変時間を浪費してしまうこともあると感じます。今回の学習を通して、そのような現状や課題が明らかになりました。自身の成長のためにも、視点の偏りや座、そして野といった多角的な視点から分類し、考え抜くプロセスを基本動作に取り入れることの重要性を再認識しました。 企画書のコツは? 事業企画書の作成においては、目的、実行手段、計測可能な目標、さらにはKPIなどの項目を明確に設定することが求められます。提案資料では、まず顧客課題を整理し、優先順位やトレードオフの定義を行い、成功基準やコスト、リソースの判断を行います。そして、行動計画やマーケティング施策においては、遂行目標や手段の設定、さらに進行・中止・撤退の判断が不可欠です。 日常業務でどう確認? これらの内容は、日常の業務においても活用できる考え方です。例えば、日常の発信や応答では、「目的とは何か」「誰のためで誰の基準であるのか」を徹底的に考え、漏れや重複がないかを常に確認することが大切です。また、定期的なビジネス報告や会議では、視点だけでなく視座の観点からの確認やヒアリング、報告が求められます。さらに、事業企画やレビューの際には、顧客や市場、効果の見通しについて偏りや漏れがないかどうかを十分に検証することが重要です。

デザイン思考入門

デザイン思考で見えた変革の瞬間

発注とユーザーの違いは? ITシステムの外部委託先の立場から考えると、システム開発を進める際、お客様はエンドユーザーというよりも、顧客企業の担当部門として対応することが多いです。担当部門はユーザーと異なる視点を持つため、今回学んだエンドユーザーの立場よりも、発注者の意向に注力せざるを得ません。しかし、発注者との共感、課題の理解、試作品の作成といったプロセスは十分に実現可能です。真にエンドユーザーに役立つものを提供するのは難しいものの、発注者の満足を追求する姿勢が重要だと感じています。 満足の不一致はどう? 一方で、発注者の満足を追求できたとしても、発注者がエンドユーザーに目を向けなければ、エンドユーザーの満足と発注者の満足は一致しなくなります。このような複雑な階層構造を持つ大規模な組織では、デザイン思考を一部の人だけが理解していても、途中のプロセスでその意義が薄れてしまうため、広く多くの人に理解してもらうことが必要だと考えました。 試作品の使い分けは? また、プロトタイプの作成方法によって検証できる項目は異なるため、一つのプロトタイプが最適かどうかを問うよりも、各プロトタイプの特性を活かして使い分け、互いに補完していくことが重要です。さらに、組織階層が深い大規模な組織では、開発過程に関わるすべての人がデザイン思考の考え方を身につける必要があると感じました。加えて、生成AIを発注者役として活用し、想定問答を行う手法も有用であると実感したため、今後も積極的に取り入れていきたいと思います。

クリティカルシンキング入門

ピラミッド思考で輝く説得力

論理構造の大切さは? 論理構造をピラミッドストラクチャーで視える化する手法を学び、主張の納得性の向上や論理の飛躍、見落としを防止する重要性を改めて認識しました。文章を正しく作成できるのは、しっかりとした論理構造の理解に基づいているからだと感じています。 文章作成の要点は? また、文章作成の際に意識すべき点として「言語選択」「概念の整理」「順序」「根拠づけ」の四つの側面があり、これらを怠ると受け手に不必要な負担を強いることになると実感しています。 どう論理を活かす? この学びを更に深めるため、AIコーチングを通して、論理構造が具体的なビジネスシナリオにどのように適用できるか、またその中でも特にどの側面に難しさを感じるのかについて考える機会がありました。 どう説得力を高める? ビジネスシーンでは、上司へのプレゼンテーションやメンバーとの進捗報告、業務相談など、あらゆる場面で基礎となる思考力が役立つと考えています。自身の論理構造のチェックだけでなく、相手の主張の論理構造を把握することで、不備や見落としに対しても明確な質問を投げかけられるようになりました。 日常で論理を練習? さらに、Excelやメモを使いながらピラミッドストラクチャーを作成することを日常業務の習慣とすることで、論理構造を頭の中で自然に描けるようになることを目指しています。そして、会議前のプレゼンに向けて自身の主張とその理由を言語化する訓練を週1回400文字程度で実施し、思考力の向上に努めたいと考えています。

デザイン思考入門

プロトタイピングで切り拓く実務革新

プロトタイピングの留意点は? システム開発では、定められた手法に沿った実践が成果の成否を分けるとよく言われます。その一環として、プロトタイピングが推奨される場合もあり、顧客に実際の成果物に近い形を見せることで、齟齬がないかを確認することが目的です。しかしながら、プロトタイピングはコストがかかる点や、成果物に近いがゆえに本来の目的と異なる変更が行われるリスクがあると感じています。そのため、KT法など他の手法も併用すべきではないかと考え、今回の学びを改めて実務に活かす必要性を再認識しました。 初期案件で試す価値は? 開発初期の案件でこれを試みるのが最もやりやすいと感じています。初期段階であれば、手法や認識に囚われ過ぎず、目的を確実に反映させることが可能だからです。現在、ヒアリングの初期段階にある案件もあるため、その案件で実践してみたいと思っています。目的の決定においてはMUSTとWANTの両面が存在することから、これらを明確にし、常に共感を得続ける姿勢が大切だと考えています。 非線形プロセスの注意点は? また、WEB制作も手がけている中で、ビデオ内の説明は非常に分かりやすかったと感じました。実際に手を動かしていない方にはイメージしにくい部分もあるかもしれませんが、実務では線形的なプロセス進行が理想とされる一方、現実には非線形となる場面が多いことが大きな課題となっています。手戻りは望ましくないものの、「手戻り禁止」ではなく、最低限に留めるという意識が必要であることを改めて認識しました。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right