データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

クリティカルシンキング入門

視覚で魅せる!伝わる文章の極意

今週の学びは何? 今週の学習では、グラフや図、文字の視覚効果を活かす工夫と、ビジネスライティングについて学びました。特に「相手に読んでもらえる」という良い文章作成のポイントに大きな共感を覚えました。 グラフはどう使う? まず、グラフや図の効果的な使い方では、時系列には棒グラフ、推移や変化の表現には折れ線グラフ、割合やパーセントの表示には円グラフが有効であることを学びました。また、フォントや色、下線、アイコンを適切に活用することで、伝えたい内容がより明確に伝わる工夫についても理解を深めました。 良い文はどう作る? 次に、ビジネスライティングにおいては、良い文章を作るための4つの勘所―目的を明確にする、読み手を理解する、内容をしっかりと構成する、そして相手に読んでもらえる工夫をする―という点が示されました。さらに、冒頭にアイキャッチを置いたり、リード文を工夫する、文章の硬軟を調整する、体裁を整えるなど、読みやすさを高める具体的な手法も学びました。 学びをどう生かす? これらの学びを、今後の業務に積極的に活かしていきたいと考えています。たとえば、社内会議や説明会、研修会などのプレゼンテーションでは、以前は伝えたい内容を分かりやすく伝えることに注力していましたが、今後はグラフや図、表の活用により視覚効果を高め、より丁寧な資料作りに取り組む予定です。メール文章では、結論を先に述べ、余計な表現を削ぎ落とすとともに、「相手に読んでもらえる」ための工夫をさらに磨いていきます。さらに、社内報告や議事録においては、文章の冒頭に要旨を簡潔にまとめるとともに、フォントや色、アイコンを活用することで、情報を効果的に伝えることを目指します。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

リーダーシップ・キャリアビジョン入門

変化を楽しむリーダーの軌跡

リーダーシップはどう? 現在の職場は比較的若いメンバーが多いため、日常の業務推進においてどのようにリーダーシップを発揮するかが課題となっています。これまで、指示型から支援型、参加型、達成指向型へと段階的にリードしていこうと試みてきましたが、各アプローチだけでは彼らのニーズを十分に補うことができないと感じています。そこで、どの仕事をどのメンバーに委ねるかを慎重に検討し、目標に対する道筋を明確に共有することで、メンバーが自発的に動ける環境づくりを期待しています。 マネジメントの課題は? また、将来的にマネジメントを担うメンバーに対しては、これまで動機づけに重きを置いた達成指向型だけでなく、抱えている不安に寄り添う支援型や一部指示型の手法も取り入れる必要があると考えています。どのリーダーシップの型にも固執せず、業務の内容や相手の状況をしっかりと把握した上で、ゴールに向かって導く姿勢を意識していきたいです。 実行ポイントは? 具体的には、以下の点を重視して取り組みます。 ① 任せる業務について、各メンバーが自立して遂行できるか、能力や経験が十分であるかなど、状態や状況を正確に見極める。 ② 目的を共有することで、メンバーの理解度や、業務達成に向けた具体的な道筋が描けているか、不安がないかを確認する。 ③ 理解度に応じて、業務の進め方(抽象的または具体的な指示の内容や確認のタイミング)を柔軟に調整し、結果として指示型、支援型、達成指向型のリーダーシップをバランスよく発揮する 成長環境は? 以上の取り組みにより、メンバーが持つ潜在能力を最大限に引き出し、自立して業務に取り組める環境作りを進めていきたいと考えています。

マーケティング入門

エンタメとマーケで見る心の動き

自己紹介で何を感じた? 「自己紹介」のエクササイズで、相手の自己紹介を聞いた際に自分の気持ちを意識するように指示されたことが印象に残っています。確かにこれは、商品やサービスを提供された際に顧客がどう受け止めるかという心の動きと全く同じです。個々のニーズにもよるでしょうが、私は経歴などの客観的なデータよりも、相手の話し方や温度感、表情に引き込まれる傾向があります。一方で、自分では自己紹介を比較的上手くできたと感じていましたが、実は何の根拠もなくそう思っていたことに気付き、フィードバックが重要であることを悟りました。相手がどのように受け止めたのかを把握することは、マーケティングの基本かもしれません。 コンテンツ反応を読み解く? 自分の仕事に当てはめて考えると、提供したエンタメコンテンツがどのように受け止められているのか、その視聴時間数や視聴態度としてのフィードバックを読み解く視点が重要だと感じました。視点によって、浮き彫りになるフィードバックもあれば、埋もれてしまうものもあるでしょう。何を基準に解釈するかは感性も関わるので、感性の磨き方も学びたいと思います。 データで戦略を立てる? 新しい職種へのチャレンジとして、まずはデータの全体像を把握することが必要です。調査方法や測定手法、マトリックスを理解し、何を成功とするのか、その基準を把握することに加え、なぜそれが成功とされるのかを考えます。また、過去の事例において、仮説と結果の差分はどの程度だったのかを知り、戦略を立てる際にどのようにデータを活用するのかを学びます。データがサポートしない新しいことにチャレンジする際は、どのように戦略を立てるのかを考えることが必要です。

リーダーシップ・キャリアビジョン入門

リーダーシップとデータ活用で未来を拓く

リーダー姿勢はどう? リーダーの本質は、つき従う者が存在することであり、信頼がなければ従う者はいないという点にあります。したがって、リーダーは自ら行動を起こし、組織のあるべき姿勢をメンバーに示すことが重要です。また、目標の重要性をメンバーにしっかりと理解させる必要があります。 困難にどう向き合う? 目標達成の過程では、必ず困難や課題に直面します。その際に、リーダーが逃げたり、メンバーに責任を押し付けたりすると、信頼は得られません。メンバーは、実務能力だけでなく、困難や課題にしっかりと向き合う意識を持つことをリーダーの行動を通じて見ています。 CRMで何が変わる? 現在、マーケティング、戦略、商品企画業務に従事していますが、職場でのCRMデータ活用はまだ十分に浸透していません。そこで、CRMデータを活用したマーケティング戦略と商品企画を目標に掲げています。具体的な分析結果をもとに啓蒙活動を始め、メンバーにこの意義を共感してもらうことが重要です。自らの事例を分かち合い、部会などを通じて分析目的やデータの切り口を発表させることで、職場でのCRMデータ活用を普及させています。 以下のステップで活動を進めています: 1. 目標設定と部内での課題提起(実施済) 2. 自身の分析事例の明確化(実施済) 3. 他メンバーへの目標と取り組みたい内容の明確化(12月) 4. 他メンバーが実施した分析手法とその目的の明確化(12月から2月) 5. メンバーからの事例を集め、集合知として事例集を完成させる(3月) このプロセスを通じて、組織全体でCRMデータの活用を深め、効果的なマーケティング戦略を構築することを目指しています。

クリティカルシンキング入門

学びで魅せる問題解決の瞬間

4つの基本は何? 問題解決のステップとして、まず「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の追求)」「How(解決策の立案)」の各要素に沿って、問題が何であるか、どこに問題があるのか、なぜその問題が生じたのか、そしてどのように解決すべきかを整理します。 現状をどう把握? 現状を正確に把握するためには、問題を分解して考えることが基本動作となります。その際、MECE(もれなく・ダブりなく)を常に意識し、目的に応じた適切な切り口と切り方を選ぶことが大切です。 切り口はどう選ぶ? 具体的には、MECEの切り口としてまず、全体集合を部分集合に分ける方法があります。例として、年齢、性別、職業などの観点から情報を整理します。次に、事象を変数で分ける手法、例えば「売上=単価×数量」や「利益=利益/売上」といった考え方があります。さらに、ある事象に至るプロセスに着目し、お客様が不満を感じる可能性のある各段階(ご案内、オーダー、提供時間、味、会計、退店後など)を細かく見極める方法も有効です。 対策はどう決める? サービストレーナーとして店舗向けのクレーム問題に取り組む際は、問題がどの程度のものか、どこに問題があるのか、なぜその問題が発生しているのか、そしてどのような対策を講じるべきかを徹底的に分解しながら分析します。このとき、プロセスの各段階を重視し、冷静かつ客観的に全体を俯瞰することが重要です。 日常にどう活かす? 以上の考え方は、問題が起きた際にネガティブにとらえず、全体像を俯瞰して分析するための基本的なアプローチとして、日常的に意識し習慣化することが求められます。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

クリティカルシンキング入門

情報整理で業務効率を劇的に向上させる方法

情報整理の重要性をどう感じたか? 様々な切り口で情報を分解し、要素を整理することの重要性を改めて実感しました。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方を用いることで、漏れなくダブりのない形でカテゴリを設定できるようになります。これにより、分析や提案の精度が向上することを実感しています。 効果的な提案のために何を考慮すべきか? 例えば、お客様の傾向を分析するときには、業種やニーズ、提案内容など多角的な視点で考えることが重要です。業種ごとにニーズが異なるので、それぞれに応じた提案をすることで、より効果的なアプローチが可能になります。 業務の効率化には何が必要か? また、自分の業務や時間の使い方についても、同様に多面的に考えることが求められます。こうした考え方を定着させることで、より効率的に業務を進めることができるようになります。具体的なフローを考え、その進め方についても見直すことで、業務の効率化が図れることを感じました。 案件成功へのパターンは? さらには、案件の進め方についても同じアプローチが有効です。異なるパターンを検討し、それぞれのパターンが成功する可能性を考えることで、「これなら」という勝ち筋を見つけることができます。こうしたプロセスを経ることで、実際の提案がより具体的で説得力のあるものとなり、お客様に刺さる提案ができるようになります。 MECE活用の意義とは? このように、MECEの考え方を取り入れ、情報を整理し分析することの意義を再確認できました。今後もこの手法を活用して、より効果的な業務遂行を目指していきたいと思います。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

デザイン思考入門

定性分析で見える現場の真実

定性分析はどう整理? 現在、自社の業務改善のための分析を進める中で、これまで漠然としていた内容が「定性分析」であったことに気づき、大きな発見となりました。業務のやり方は数値で把握しにくいため、現場での観察やインタビューを通じて状況を捉え、得られた情報から実態を明らかにする必要があると感じました。また、コーディングにより一次コード、二次コードと分類し、フレームワークやプロセスに落とし込む方法を実践することで、今後も学びを深めていこうという意欲が湧きました。 顧客課題をどう捉える? 顧客課題仮説の導出は非常に難しいと実感しました。定性分析でコーディングを進める際、観察やインタビューから得られる情報が十分かどうか不安になるとともに、ペルソナやカスタマージャーニーマップの捉え方によって仮説の内容が変わる点も大きな気付きでした。今回の講義で学んだのは、顧客課題仮説を広く捉えるのではなく、焦点を絞り「ユーザー」「状況」「課題」「ソリューション」という具体的な文書化を行う手法であり、その手法は非常に有効だと感じました。 問題本質をどう捉える? さらに、「問題の本質を捉える」から始まり、洞察の整理と可視化、顧客課題仮説の作成、ユーザー中心の視点の維持、そして検証と改善という流れを作ることの重要性を学びました。定性分析では、プロセスやフレームワークの構築により、定量分析で検証すべき仮説が明確になるという点も理解できました。実際の現場での観察からは、ユーザー自身が気づいていない暗黙知に触れることができる有効な手法であることを実感しました。今後はこれらの経験を活かし、顧客に対する課題分析をさらに実践していきたいと思います。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right