データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

データ・アナリティクス入門

見える化で進化する学び方

なぜ計画的分析が必要? 「やみくもに分析しない」という考え方が特に印象に残りました。アウトプットのイメージは人それぞれ異なるため、事前にすり合わせを行うことは、自身の経験からも非常に重要だと実感しています。実際に、プロセスを「what」「where」「why」「how」に分けて見える化することで、優先順位をつけて整理しながら分析を進めることができたため、この手法を今後も続けていきたいと考えています。 どう使うと効果的? また、分析の際に習った複数のフレームワークを活用することは、とても有効でした。特に、複数人で作業を行う場合、様々な切り口からのアイデアを出し合い、一度収束させることで、抜け漏れを防ぎながら優先順位を明確にできたという実感があります。さらに、バイアスに関しても事前に目線を合わせることができたため、今後もこの方法を積極的に取り入れていきたいと思います。

データ・アナリティクス入門

小さな実験で見えた業務改善

A/B分析はどう見る? A/B分析の手法について理解が深まりました。分析時の基本として、環境要素を一致させることや、複数パターンの場合には確認したい要素を絞り込むなど、判定材料の吟味が重要であると感じました。ただし、効果や判定は比較的しやすい印象を受けています。 UI選択はどうする? 現在、課内の業務案内掲示板の改修を進めており、どちらのUIが確認しやすいか、また問い合わせ件数が減少するかを試す計画です。ただし、使用するツールが決まっているため、パターンが限定される点と、同時に開示できないジレンマを感じています。 引継ぎはどう進める? 明日から業務引き継ぎ用のマニュアル作成が始まるため、まずは小規模かつ迷惑のかからないメンバーでトライアルを実施します。迅速に変更できる体制を整えることで、双方の良い点と不得意な点の判定を容易にすることが狙いです。

戦略思考入門

本質を掴む経営戦略のコツ

定石をどう捉える? ビジネスの定石を正しく理解し活用することの大切さが印象に残りました。漠然とした知識だけで判断してしまわず、本質をしっかりと捉える姿勢が必要だと感じています。 適切な打ち手は? また、単に総生産数を増やすだけでは規模の経済が働くかどうかは不明であり、自社の状況に合わせた適切な打ち手を検討する必要があるという点も重要だと思いました。 大数字の罠は? 技術開発提案書を作成する際、年間や生涯の生産数といった大きな数字を用いていましたが、規模の不経済が生じていないか、また工場の生産状況を踏まえた上で、より効果的な施策を考える必要性を強く感じます。 情報の真偽は? さらに、範囲の経済性などの要素も十分に考慮し、単なる定石に頼るのではなく、部分的な情報だけに流されずに事実の本質を見極めることが求められていると実感しました。

クリティカルシンキング入門

伝えるって難しくも楽しい

どうして情報が伝わる? 情報がどのように伝わるかは、使用するデータの種類や視認性の工夫、そして文字の大きさや太さ、色といった強調方法に大きく左右されます。どの情報をどう使うか、またどのようにメッセージを添えるかで、受け手に与える印象が大きく変わるのだと感じました。 どうして伝え方にリスク? また、伝えやすさだけでなく、意図的にメッセージの伝わり方をコントロールすることには、逆効果になってしまうリスクも伴います。単に情報を詰め込むのではなく、何をどのように伝えるかを慎重に考える必要があると実感しました。 どうして情報を絞る? 依頼や相談をする際には、まず網羅的に情報を集めることが前提です。その上で、短い時間で相手に納得してもらい、効果的なアクションへと結びつけるために、情報を意図的に絞り、わかりやすく可視化することが重要だと考えます。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

戦略思考入門

固定費と習熟度が創る現場革命

経済性と習熟効果はどう? 規模の経済性について学びました。固定費と変動費の違いを正確に分析することの重要性を再認識し、分析を誤ると規模の不経済に陥る可能性がある点が印象に残りました。また、習熟効果についても一定程度理解していたものの、製造現場では人が入れ替わるのは仕方のない事実であるため、個々の熟練度に過度に依存しない設計やマネジメントが求められると感じました。 自動化の影響はどう考える? 製造現場では、自動化やAIの導入により、人が関わる部分が次第に置き換えられています。こうした変化を進めつつも、システムの導入によって新たな不具合が生じる可能性や、重要な業務においては依然として人の習熟度が影響を与える点に注目しています。そのため、こういった課題についても分析し、適宜改善策を講じていく必要があると考えています。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

クリティカルシンキング入門

分解思考で発見する全体像

どうやって視点を変える? 分解して考えることや、複数のパターンで検討する視点が印象に残りました。普段、考えが一方向に偏りがちだったのですが、問題を分解して、さらにその内容を複数の観点から考察することで、物事の見え方が大きく変わり、結果にも違いが出ると実感しました。 どう書類の整理を進める? 書類作成において「漏れなく、ダブりなく」という指摘をよく受けます。実際、まだ情報の抜けや重複が散見されるため、まずは紙に全体を書き出し、各部分をしっかりと繋ぎ合わせる習慣を付けたいと思います。今後のタスクでは、問題を分解して簡単な図にまとめるなどし、より効果的な整理方法を試してみるつもりです。 どう共に考えるべき? この「漏れなく、ダブりなく」という考え方を、さまざまな例を通じて皆さんと共に考えていければと思います。

クリティカルシンキング入門

視点が変わる!課題見える化の極意

なぜ課題は視覚化すべき? 課題を明確にすることが、適切な対策を打つ上で不可欠だと学びました。講座では、ミーシーに分解しグラフなどで視覚化することで、課題をより具体的かつ明瞭に把握できる点が印象的でした。 多様な視点は必要? また、自分自身の視点だけでなく、他者の意見や視点を取り入れることが、課題の本質を捉える上で重要であると実感しています。これにより、データ分析での課題抽出にも効果的な手法であると考えています。 どうやって相手に響かせ? さらに、報告や資料作成の際には、相手が何を求めているのかを意識し、視点を柔軟に切り替える必要があると気付かされました。見せる場所や強調すべき点を明確にすることで、資料を閲覧する方の注意が散漫にならず、伝えたい情報がしっかりと伝わるよう努めています。

クリティカルシンキング入門

見落とさない!分解思考のすすめ

分解のメリットは? 数字の分析において、まず各要素に分解することが非常に効果的であると学びました。たとえ特定の切り口が顕著な兆候を示していても、他の視点から検証し、見落としがないか批判的に見直すことが大切だという点が印象に残りました。 MECEって何だろ? また、分解を行う際には、まずその切り口全体の定義を明確にすることで、情報が重複せず抜け漏れなく整理される(MECEの考え方)というコツも習得しました。これを踏まえ、会社内での人材や各種KPIなど複数の視点から実践していく予定です。 サーベイの分析はどう? 特に、先日実施された全社のエンゲージメントサーベイを改めて分解し、分析することで、さまざまな事象の要因をより明確に見定められるのではないかと考えています。

戦略思考入門

論理で明かす経済性の秘密

規模の経済性をどう捉える? ゲイルで学んだ規模の経済性と習熟効果は、これまで感覚的に感じていたことが論理的に整理され、非常に印象に残りました。また、バリューチェーンと範囲の経済性についても、自社の資源を他の事業で活用する際に、新規事業検討のための自社分析や市場環境の把握が重要であると再確認できました。 新戦略のヒントは何? ウェブサイト運営で新しいコンテンツを検討する中、これまで感覚に頼っていた部分を、今回学んだ独自性、模倣困難性、そして顧客に対する価値拡大の視点を取り入れることで、より具体的かつ戦略的なアプローチが可能になりそうです。 理論で見つけた気づきは? また、ビジネス経験を理論化し言語化することで、新たな気づきを得られたことが大変有益でした。

「印象 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right