データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

クリティカルシンキング入門

問いを立てて見える世界が変わる!

問いはどう見つける? 動画学習を通じて学んだことは、まず課題に対して「問い」を立てることの重要性です。自分自身に問いを投げかけ、それを残し、共有することが求められます。問いを立てていないということは、何も考えていない状況と同じだと気づきました。問いを立てることで、本当に考えていることが明らかになるのです。 分解で何が明らか? 実践演習では、物事を分解することで普段は見えないまたは分かりにくい部分が明らかになり、結果として判断が容易になることを学びました。この分解のプロセスは、考える力を高めるために非常に効果的です。 どこに問題が? 特に印象に残っているのは、明らかに問題がある資料において、具体的にどこが問題なのかを文章で説明する難しさです。また、職場でのテーマがずれることを防ぐためにも「問い」を残し、周囲と共有することが役立つと感じました。 数字は何を示す? 営業職などの数字が厳しい環境においても、その数字がなぜそうなったのかを振り返る機会が少ない現状を打破し、ここで学んだ論理的思考を活かすことが重要だと考えます。まず「問い」から始め、業務で悩んだときには問いをしっかり立て、何も考えていない状態を避ける。もう一人の自分に問いかける行動を取り、課題を分けて考える癖をつけることが、業務改善に繋がるのではないかと思います。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

戦略思考入門

異なる視点が生む成長の物語

個性の違いを感じる? 同じ職場で同じ業務に携わっていても、個々の考え方や向いている方向が異なることを学びました。異なる見解を否定するのではなく、別の視点を取り入れることでチーム全体の視野が広がり、より質の高いアウトプットが期待できると実感しています。 分析で全体を見直す? また、各種フレームワークを用いた分析を通して、事業全体や自分自身の業務を大局的に見直すことができると感じました。定期的にこれらの手法を実践することで、プロジェクト全体や自身の状況を整理し、効果的な改善・提案に結びつけたいと考えています。 共有で理解深める? さらに、普段当たり前と捉えている業務の内容も、言語化や図表化して共有することにより、チーム全体の目的意識を維持する手段になると確信しています。施策を提案する際には、フレームワークを活用して背景・根拠・想定される効果を明確にし、ストーリー性を持たせた説得力のあるアプローチを心がけたいと思います。 説得力の根拠は? チームメンバーとのコミュニケーションにおいては、分析結果を交えることで自身の主張に説得力が増すと感じています。業務推進においては、感覚だけに頼らず、3C分析やSWOT分析などを参考にしながら、合理的な判断とその決断が全体に与える影響を考慮することを意識していきたいと考えています。

データ・アナリティクス入門

仮説とデータで挑む本質探求

対概念をどう理解する? 「対概念」を活用し、仮説を検証する際は、まず「当社の戦略が原因である」と「戦略以外の要因が原因である」との両面から疑い、根拠を明らかにすることが求められます。 A/Bテストの注意点は? A/Bテストを実施する場合、前提条件を統一することが不可欠です。施策の要素を増やしすぎると、原因と結果の関係が不明瞭になるため、各施策は1つずつ実行するのが適切です。 仮説の再検証は? 現在は、大量のデータから分析し仮説を抽出、その結果を基に施策を検討するプロセスが行われています。しかし、原因に関する仮説設定とその再分析のフェーズが不足しているため、仮説と分析を繰り返すプロセスをより一層実施する必要があります。 比較検討の基本は? また、ABテストの前提条件は「Apple To Apple」を基本とした比較が原則です。この考え方を意識して、施策間の比較検討を行い、効果の正確な判断を下すことが重要です。 今後の分析アプローチは? 今後は、大量データからの分析と仮説抽出は現状通り行いながらも、フレームワークを活用して幅広い仮説を立案し、必要な分析を追加することで、各仮説の更なる深堀りを実施します。比較検討の際は、要素を正確に抜き出し、必ずApple To Appleの条件で検討することが大切です。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

デザイン思考入門

会話で掘り起こす本音の真実

定性分析の意義は何? 定性分析という言葉は以前から耳にしていましたが、具体的な内容についてはあまり理解していなかったため、普段使っている手法ということもあり、大まかなイメージは持っていました。日常的に顧客と会話する中で、提供しているサービスに対する意見や不満を雑談の中からヒアリングし、複数の顧客の声を集めることで共通の改善ポイントを見つけ出してきました。フレームワーク化はしていなかったため、これを機に試してみることにしました。 顧客の反応はどう? また、ある顧客で認識した課題を、別の顧客にも「こういった課題はありませんか」と確認することがあります。その結果、多くの方から「あ、そうだね」と言われ、潜在的な問題を掘り起こせたような気がする反面、半ば無理やりに認識させたのではないかと感じることもあり、共感フェーズの難しさを改めて実感しました。 対応策は進むか? さらに、特定の条件下にある利用者の特定シチュエーションでの課題に焦点を当てる重要性は理解しているものの、実際にその課題に対して具体的な対応策を講じるまでには至っていません。対象となるケースが想定以上に少ないため、コストメリット的にも実施判断にまで至らないのが現状です。今後は、次のフェーズで小規模なテストなどを通じ、解決策を模索していければと考えています。

クリティカルシンキング入門

多角的な視点で本質を探る思考法

フレームワークは有効? 5W1Hといったフレームワークを活用することで、モレやダブりを防ぎながら、迅速に考えをまとめることができると感じています。また、物事を複数の切り口から分解してみると、表面的には見えなかった本質が見えてくることがあります。一度や二度の分解で結論を出すのではなく、「本当にそうか?」と批判的思考を持ちつつ、別の視点を探ることを心がけたいと思います。 具体例はどう分析? 具体的な活用例としては、アンケート集計結果の分析があります。例えば、性別や年代別、地域別に分解し、さらにクロス集計することで、表面上では分からなかったデータの特徴を発見する可能性があります。また、企業審査における決算書分析でも有用です。売上の増減要因を確認する際に変数分解を行い、事業者の申出内容との整合性を判断することができます。もし整合性がない場合は、事業者が気づいていない点を指摘し、経営アドバイスを行うことができるでしょう。 どう切り口を見出す? 私の役割として、部下が行うアンケート集計の分析結果をレビューする立場にあるため、「別の切り口はないか」という視点を大切にしています。また、別の切り口を見つけた場合、そのことを指摘するだけでなく、分解の必要性やその切り口を採用した理由もきちんと伝えるように心がけています。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

「判断 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right