データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

リーダーシップ・キャリアビジョン入門

リーダーシップの真髄とフィードバックの技

リーダー像はどう変わる? ライブ授業を通じて自身の目指すリーダー像を言葉にしたり、人と共有する経験を重ねることで、そのリーダー像が一層鮮明になりました。また、フィードバックを行うグループワークでは、フィードバックの難しさを実感しました。相手に与える印象や使用する言葉の選択は、結果を見て初めて判断できますが、その前にしっかりと考えることが大切だと感じています。 伝え方はどう工夫する? 私は定期的な部下との進捗確認の面談や半期の評価面談でフィードバックを行う機会があるため、相手のタイプを分析し、論理的に伝える内容や順序を考えて伝えることが重要だと考えています。これが実際に最も有効に活用できる場面だと思っています。 面談はどう活かす? 近日中に実際に進捗確認面談を予定しているため、その際にこれらの知見を活用したいと思います。特に、評価基準や期の初めに設定した目標を振り返りながら、それに対する進捗を確認し、話を進めることが必要です。また、相手が思考することを苦手とするタイプであることを念頭に置いて、打ち合わせを進めていきたいと考えています。

データ・アナリティクス入門

データ分析で差をつける!実務のヒント

どうして比較が鍵? 分析は比較です。判断基準には、Aがある場合と無い場合を比較することが重要です。適切な比較対象を選ぶことが鍵であり、特に分析する要素以外の条件を揃えること(Apple to Apple)が必要です。分析の目的に応じて比較対象を選定します。 実務でどう活かす? 実務では、委託業者の選定などにおいて、この知識が非常に役立つことがわかりました。データ分析は比較が基本ですので、何のためにどのようなデータが必要なのかを明確にし、仮説を立てることが重要です。これにより、データ分析の目的をはっきりさせ、早速実践に移したいと思います。 コンテンツをどう提案? ラーニングイベントのサーベイ結果をもとに、今後提供可能なコンテンツをいくつか提案する予定です。実践プロセスとして、まずはデータ分析の目的を仮説に基づいて明確化し、次に判断基準を具体化します。具体化のステップとしては、Aがある場合と無い場合を比較し、適切な比較対象を選ぶこと、また分析したい要素以外の条件を揃えて(Apple to Apple)、目的に沿った比較を行います。

アカウンティング入門

数字で見える経営の未来

価値提供で迷った? お客様に提供する価値が何であるか、そしてその実現のためにどこで努力すべきかという、事業経営の原点を改めて学ぶことができました。どの市場で勝負するか(立地)と、どのようなビジネスモデルで展開するか(構え)の両面が重要であると実感しました。具体的な事例を通して、数字の重要性はもちろん、ぶれない経営のためにこだわるべきポイントがあることを学びました。 計画にどう活かす? この学びを今後の事業計画に活用していきたいと考えています。特に、様々な製品やサービスを企画する際には、どの市場をターゲットとし、どのような価値をお客様に提供するかという基本方針に加え、財務体質などを定量的に説明できる状態を目指したいと思います。 分析結果をどう伝える? また、様々な企業や事業の分析を通して、いくつかのシナリオごとにどのような結果が得られるかを整理し、人に説明する際の参考資料として蓄積していくつもりです。現状、直感に頼った判断が多いので、今後は人を動かすために、財務・マーケティングスキルをより一層磨いていきたいと考えています。

クリティカルシンキング入門

思考の偏りを解消するロジックツリー活用法

思考の偏りを客観視するには? 人はどうしても自身の経験に基づいて物事を判断しがちです。しかし、その結果、思考に偏りが生じることがあります。そこで、ロジックツリーを活用して問題を分解し、「もう一人の自分」が客観的に思考をチェックすることが重要です。 目的意識をどう持つべきか? 常に目的を意識し、「何のために考えるのか」を明確にすることが求められます。これが不明確な場合、情報収集や検討の過程で方向性が定まらず、無駄な努力をすることになりかねません。 チームでの解決策を考えるには? チームビルディングや部下のコーチング、顧客とのやりとりでは、相手の背景や前提条件を理解した上で、目的に合致し、双方が満足できる提案や解決策を考えることが大切です。 分解思考で深掘りする方法は? 物事を分解して考える習慣を身につけましょう。経験則に基づいてすぐに判断するのではなく、要素を分解して書き出し、それに基づいて考えます。自身の考えと異なる意見があれば、「なぜそのように考えるのか」を深掘りし、相互理解を図るように心がけましょう。

データ・アナリティクス入門

データ分析が拓く新たな可能性

比較の重要性は何か? 分析の本質は比較にあります。感情に左右されず、数字をそのまま受け入れて冷静に考えることで、解決策が見つかるかもしれません。主観的な感想に基づく判断は間違いやすいので注意が必要です。 適切な比較対象の選び方 適切な比較対象を選ぶことも重要です。問題に一方的に集中するのではなく、異なる要因からも分析を進めることで、全体的な状況を把握することが可能です。同じ条件でAが存在するかどうかを確認するのが理想ですが、現実にはこれまでの数字と多様な理由が絡んできます。この単科講座を通じて、可能な限りの状況を研究し、関連する要因を特定して、効果的な解決策を考えるスキルを身につけたいと思います。 データ分析をどう活用する? これまでの現場対応では即応的に問題を解決してきたかもしれませんが、今後はデータ分析を活用し、理論的なアプローチを用いることで、接遇技術をより効率的に改善できると考えます。その場で「できない」と言い訳をするのではなく、選択肢を提示することで、より良い結果を導き出せるのではないでしょうか。

戦略思考入門

選ぶ勇気が明日を変える

方向性は明確ですか? スタックインザミドルの考え方によれば、方向性を明確にしなければ、何事も中途半端に終わってしまうことを改めて実感しました。 本当に選べていますか? 何かを選び、その道を追求しなければ、いくら時間があっても人手があっても物足りなさを感じることがあります。頭では「選び捨てる」ことの大切さを理解していても、実際に行動に移すことは難しいものです。 ターゲットは決まっていますか? 事業のターゲット層を決める際、情報配信や講座、セミナーの開催において、つい自分が来てほしいという理想やスタッフの年齢を考え、曖昧にかつ幅広く設定してしまっていました。しかし、過去に実際に参加していた層や、行動している層の情報をもとに発信していくことが重要です。 調査結果は活かせますか? まずは、参加者の世代や性別などを調査し、そのデータを次回以降にも活かせるよう整理することが必要です。この作業を通じ、どの世代向けに事業を展開するかを判断し、その世代にふさわしい言葉で情報を発信できるようになります。

戦略思考入門

新たな視点で探る優先順位の極意

どれを先にすべき? 普段の業務では、仕事に取りかかる際、優先順位をあまり意識せずに進めていると感じていました。しかし、今回学んだ「何を優先し、何を後回しにするかを判断する」という考え方は、実際に製品を売り出すときなど、日常業務でもよく遭遇する状況だと気づかされました。たとえば、売上高、利益率、顧客のリピート率、製造にかかる時間といった要素を基に、どれを優先すべきかを判断することが求められます。 どの基準で決定? 業務においては、売場に商品を揃える際、どの基準を用いてタスクの優先順位を決定するかについて検討し、最適な方法を見出していきたいと感じています。また、その決定基準をチーム全体で共有することによって、仕事の効率を向上させることができると考えています。 チームでどう話し合う? さらに、チームメンバーとも優先順位の基準について話し合い、共通の考え方を持つことで、より効果的に業務を進められる環境を作りたいと思います。実際に方法を試し、結果を検証しながら最適な手法を確立していきたいと考えています。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

「判断 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right