データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

クリティカルシンキング入門

学びで魅せる問題解決の瞬間

4つの基本は何? 問題解決のステップとして、まず「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の追求)」「How(解決策の立案)」の各要素に沿って、問題が何であるか、どこに問題があるのか、なぜその問題が生じたのか、そしてどのように解決すべきかを整理します。 現状をどう把握? 現状を正確に把握するためには、問題を分解して考えることが基本動作となります。その際、MECE(もれなく・ダブりなく)を常に意識し、目的に応じた適切な切り口と切り方を選ぶことが大切です。 切り口はどう選ぶ? 具体的には、MECEの切り口としてまず、全体集合を部分集合に分ける方法があります。例として、年齢、性別、職業などの観点から情報を整理します。次に、事象を変数で分ける手法、例えば「売上=単価×数量」や「利益=利益/売上」といった考え方があります。さらに、ある事象に至るプロセスに着目し、お客様が不満を感じる可能性のある各段階(ご案内、オーダー、提供時間、味、会計、退店後など)を細かく見極める方法も有効です。 対策はどう決める? サービストレーナーとして店舗向けのクレーム問題に取り組む際は、問題がどの程度のものか、どこに問題があるのか、なぜその問題が発生しているのか、そしてどのような対策を講じるべきかを徹底的に分解しながら分析します。このとき、プロセスの各段階を重視し、冷静かつ客観的に全体を俯瞰することが重要です。 日常にどう活かす? 以上の考え方は、問題が起きた際にネガティブにとらえず、全体像を俯瞰して分析するための基本的なアプローチとして、日常的に意識し習慣化することが求められます。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

アカウンティング入門

数字の裏側で読み解く利益の秘密

利益構造はどう見える? 今週は、損益計算書から企業や店舗の利益構造を読み解く力を養う学びを得ました。売上や費用の数値の背後には、ビジネスモデル、顧客ターゲット、コスト構造など、戦略的な意思決定の結果が反映されていることに気づきました。同じ業種内でも、提供する価値やコンセプトの違いにより、利益を上げる方法が大きく異なる点が印象的でした。結果だけでなく、その仕組みに注目する姿勢を、今後も意識していきたいと思います。 業務改善はどう進む? 現在の業務では予算策定や業務改善に関わる機会が多いため、今回の学びをコスト分析や投資判断に活かしていくつもりです。具体的には、各支出項目の構成比を分析し、売上に対する影響度の大きい要素を特定して、改善の優先順位を決める方法を検討しています。また、資料作成時には「なぜこの数値になるのか」「どのような仕組みで利益が生まれているのか」といった視点を意識し、経営層にも伝わる論理的な説明を心掛けたいと考えています。そのため、まずは月次レポートのフォーマットを見直し、損益計算書の視点を取り入れるところから始める予定です。 売上と利益の謎は? さらに、P/Lを学ぶ中で「売上が伸びているのに利益が減る理由は何か」という疑問が浮かびました。成長戦略に伴い販管費や設備投資が先行しているのか、または売上自体が薄利多売の構造なのかといった見方が必要ではないかと考えています。このような状況を正確に把握するためには、損益計算書だけでなく、キャッシュフローや貸借対照表との連動性にも注目することが重要だと感じました。今後の学習では、これらの視点も取り入れながら理解を深めていきたいと思います。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

マーケティング入門

マーケティング初心者でも分かる!ケーススタディの活用法

社会的責任を問う理由とは? 企業のマーケティング活動は、非常に複雑な社会の中で行われています。世界的なファーストフードチェーンの例を通して、購買行動プロセスやこれからのマーケティング手法についての基礎的なフレームワークを学び、社会的責任(CSR)やSDGsへの取り組みが注目されています。企業は消費者の個人的なニーズだけでなく、社会全体のニーズにも応えることが期待されるようになっており、ますます企業としての存在意義を問われる場面が増えていると感じました。 介護業界での売上アップの方法は? 介護業界においては、利用者の獲得や人材確保が重要であり、相談員のスタッフと連携して売上アップを目指すことが求められます。そのため、企業サービスの見せ方を改めたり、過去の業績を再評価することが必要だと考えます。 PDCAで何が変わる? 直接的にマーケティング手法を当てはめるのは難しいですが、研修資料を作成したり社内で問題が発生した際には、5W1HやPDCAサイクルを意識して対応することが役立ちます。また、GAIQ認定という無料で受講できる試験があるので、それについても調べてみる価値があると思います。 各業界の戦略に学ぶ 流通や観光、エンターテイメントの分野にも興味があるので、それぞれの業界でどのようなマーケティング戦略が使われているのかを考えることは、非常に興味深いです。毎日の空き時間を活用して復習し、講義で学んだことを自分のキャリアにどのように役立てるか検討しています。ケーススタディを通して印象に残ったところとまだ明確でないところは、質問できるように準備しておくことも大切です。

データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

クリティカルシンキング入門

他者の視点で捉える本質の学び

客観的視点は重要? 自分で作成したデータでは、どうしても見落としてしまう視点がありますが、他者が作ったデータを参照することで、欠落している点に気づきやすいと実感しました。これは、自分自身の思考枠に囚われがちであるためと感じ、課題設定の段階から客観的な視点を持つことの重要性を学びました。 本質を問いかける理由は? 具体的には、MECE(漏れなく・ダブりなく)を意識して要素を分解し、書き出して可視化する作業を通じて、思考の抜けや偏りを減らすことが有効であると理解しました。今後は「なぜその分析を行うのか」「何を明らかにしたいのか」という問いを繰り返し立てることで、本質的な課題に近づけるように意識していきたいと考えています。 実務でどう活かす? また、今週学んだ「本質的な課題を捉える問いの立て方」は、日常業務、特にデータ分析や支援活動の現場で活かせると感じました。例えば、売上や廃棄データの分析において、単に「なぜ数字が下がったのか」という疑問に留まらず、「本当に解決すべき課題は何か」「改善に直結する要因はどこか」といった問いを立てることで、より効果的な対策を導くことが可能となると考えています。 提案に説得力はある? 具体的な行動としては、データ分析業務でMECEを活用して要因を分解し、課題を構造的に捉えること、そして提案活動では、相手の立場に立って本質的な課題を整理し、想定される反論や疑問を洗い出してから議論に臨む姿勢を大切にしていきます。問いの立て方をしっかり意識することで、思考の抜けや思い込みを減らし、説得力のある分析と提案につなげていきたいと思います。

アカウンティング入門

カフェ経営で学ぶ価値と利益の秘密

カフェで価値守れてる? アカウンティング研修の第1週目では、P/L(損益計算書)を題材に、カフェ経営のケーススタディを通して「利益を生み出すためには、店としてどのような価値を提供するか」が重要であると学びました。特に、高級志向のカフェが原価低減を図るために安価な豆を使用しようとしたが、結果的に店のコンセプトが損なわれ、顧客に支持されなくなる可能性があるという事例が印象に残りました。単に売上から原価を引いた数値だけで判断するのではなく、「価値を守ることが利益に直結する」という視点の重要性を実感しました。 IT提案で本当に伝わる? この学びは、私が関わるITシステムの提案やプロジェクト企画にも活かせると感じています。たとえば、顧客に単にコスト削減を訴えるのではなく、その企業のビジョンや利用者のニーズに合致した価値を明示し、費用対効果の高い提案を行うことが大切です。そのため、今後は提案書の作成時に「この機能は誰のためで、どのような価値を提供するのか」を意識し、価格や納期だけでなく、価値提供を軸にした提案を心がけていきます。 価値、どう数量化する? 一方で、「価値を守ることが利益につながる」とはいえ、その“価値”をいかに定量的に測定するかについて疑問も感じました。ITプロジェクトでは、顧客の要求に応えるために機能の取捨選択が求められ、何を守るべき価値とするかの判断が難しいと感じています。他の受講生にも「価値」と「利益」のバランスについて、実際の経験をもとに意見を交換し、定量評価が難しい価値をどのようにマネジメントに反映するかを議論してみたいと考えています。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

アカウンティング入門

売上と付加価値の新発見!企業分析の視点

原価と売上の本質は? 売上総利益を付加価値と捉える視点は新鮮でした。今までは利益そのものが付加価値であると考えていましたが、実際には原価を抑えて高く売ることが価値なのだと理解しました。 利益の真意は何? 私たちはつい利益そのものに注目しがちですが、利益とは「原価、人件費、広告費などすべての費用を除いた残り」であることを認識しないと、儲けることがただ売上の成長に終始してしまう危険性があると感じました。そのため、事業計画を考える際には、収益構造をP/Lで簡単に捉え、売上と売上原価の関係や販管費と利益の割合を意識しながら効果的に検討していくことが重要です。 売上仕組みはどう見る? 売上の構造が付加価値が大きいのか小さいのかを客観的に見ることは、大変興味深いです。売上に対するコスト削減だけでも利益創出に貢献するので、資金を使う際には常に意識したいと思います。新規事業を検討する際には、どの部分に付加価値があり、どこで収益が見込まれるのかを具体的な金額と共に考える必要があります。 ブランドとP/Lの関係は? また、身近な企業のP/Lが自分の想像している企業ブランドイメージにどの程度一致しているのか確認してみたいと思いました。物価が上昇する昨今、各社がどのようにコスト削減に取り組んでいるのか、その削減がどの利益に影響を及ぼしているのかを確認することも興味深いです。さらに、新規事業において収益構造をある程度イメージできれば、夢物語にならずに実現可能性を説明できるようにしていきたいと考えています。逆に、そのイメージが描けない場合も、この視点が役立つでしょう。

「売上 × 意識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right