データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

クリティカルシンキング入門

問いがひらく実践の扉

問いの意義は何? テーマ「問い」では、まず問いの意味や狙いを意識し、その問いを常に念頭において行動することの重要性を学びました。問いを共有することで、組織全体で方向性が統一され、互いの取り組みに対する理解も深まると感じています。 売上分解の狙いは? 実践の一環として、ある事例をもとに売上をどのように分解し、売上増加のための施策を考えるかを学びました。売上は店舗数、店舗あたりの客単価、そして客数に分解でき、特に客数を増やすことがまず重要であると示されました。具体的には、テレビCMなどを通じた認知度の向上、値下げやキャンペーンによる消費者へのインセンティブ、新商品の投入などが挙げられています。また、基本要件を満たす「QSC」や「MadeForYou」といった施策により、既存の顧客を取り戻す工夫もされている点が印象に残りました。 単価向上の方法は? 一方で、単価を上げるための方策も検討され、サイドメニューやセットメニューの充実、単価の高い新商品の開発が必要だとする考えが示されました。これにより、売上全体の構成比率において、店舗あたりの売上や客数が大きく伸びた結果、客単価も一定の割合であることが確認できました。 問題発見と解決は? 今回の学びを通して、問題発見力と問題解決力の両面がいかに重要かを実感しました。私が所属する部署では、抽象的な「採用強化」や「退職防止」「人材活用」といった大きなテーマが山積みになっている状況ですが、まずはこれらを細かく分解し、言語化・数値分析することで、実際に行動に移せるレベルまで具体化する必要があると感じました。 学びを振り返る? また、これまでの講義や入門編の学習内容も振り返り、分解、言語化、数値分析といったプロセスを手間と感じずに実行することが、最終的には効率的な問題解決への近道であると理解しました。こうした基本に立ち返ることが、今後の総合演習にも大いに役立つと確信しています。

アカウンティング入門

学びで極める損益の秘密

利益分析ってどう? 損益計算書は、売上総利益から当期純利益までの5つの利益項目で構成されており、各項目の意味や相互のつながりを理解することが重要です。例えば、経常利益が黒字であっても、特別損失の影響で最終的な当期純利益が赤字になる場合があるため、個々の利益の中身に注目する必要があります。また、売上高については単年度の数字だけでなく、過去の推移と比較することで、その変化の背景や要因を読み解く視点が求められます。各利益の数値は、過去との比較や同業他社との水準比較を行うことで、より多角的な収益性の判断に役立ちます。 価値をどう守る? 儲けを考える際には、やみくもに費用を削減するのではなく、自社が大切にしている価値を見極めることが重要です。実務では、具体的な事例に基づいてPDCAサイクルを回すことで、業務改善に結びつけることができると感じました。今後は、日々の業務においてどの指標に注目すれば改善につながるかをより一層意識していきたいと思います。 利益の段階って? たとえば、利益の各段階、特に営業利益や経常利益に影響を及ぼす業務を把握することで、財務的観点から改善すべき業務の優先順位を判断できます。また、複数月や前年同月との比較を心がけることで、単なる「売上」や「請求件数」の数字だけでなく、その意味や背景を読み取る視点が養われます。 黒字と赤字は何で? さらに、経常利益まで黒字でありながら純利益が赤字となる背景を理解しておくと、上司や関連部署との会話時に説得力が増し、経営層や営業部門との議論の際にも信頼感が向上します。KPIの設定や改善レポート作成の際に、損益計算書のどの段階に関係しているかを意識することで、より成果に直結する指標設計が可能になると感じます。 比較で何が分かる? また、同業他社との比較を通じて自社の利益水準や費用構造の違いを把握することで、業務効率の向上やコスト構造の改善につながるという点も、非常に参考になりました。

戦略思考入門

戦略的思考で広がる未来への扉

戦略的な人の思考法とは? 戦略的だと感じる人は、目の前のことをただ片付けるだけでなく、常に最終的な目標を考えています。その過程自体にも意味を見出し、冷静に状況を分析することで、限られた時間と資源を最大限に活用して最短・最速で対応する方法を見つけ出します。彼らは、ただ美しい計画を描くだけでなく、実際のビジネスに応用できる実践的な手法を持っています。 戦略的行動のメリットは? 戦略的に行動することのメリットは、他の工程や部署をより広い視点と高い視座で理解し、行動できることです。これは信用や職場での評価を高め、昇進のチャンスを広げることにつながります。また、成功に近づくことで、ミスを減らし、スケジュールを確実に進行させることができます。さらに、失敗経験も次に活かすことができるのです。 戦略的に行動するためには、先を見据えてゴールを明確にし、何をやり何をやらないかを判断する能力が必要です。さらに、自分ならではの独自性を磨き、他と差別化することも大切です。 自分の成長に必要なスキルは? 私自身、これらを学びながら、ブレずに実現可能なビジョンに基づいて計画的に行動できるようになりたいと考えています。そのためには、自分の視野を広げ、定量的な思考法や知識を増やしながら、周囲を導くカリスマ性を身につける必要があります。 「最速・最短」とは本当に必要か? 特に重要なのは、結果から逆算して思考する力を強化し、スケジュールだけでなく戦略的な計画を立てることです。事業計画を立案する際には、関連部署との調整、売上予測や売上管理、メンバーの役割分担などを詳細に設定し、また各分析手法を使って有意義な行動に転換することで、プロジェクト全体の戦略的な推進が可能となります。 今回特に意識したいのは、「最速・最短」を心に留めながらも、自己犠牲を必要とする状況においては、それが本当に戦略的な必要性があるのかを常に考え、行動に反映させることを習慣化することです。

データ・アナリティクス入門

多角的仮説検証で未来を拓く

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、これを正しく用いることで個々の仕事に対する検証マインドが向上し、説得力を高める効果が期待できます。また、ビジネスのスピードや行動の精度を向上させる点でも大きなメリットがあります。 多角的視点ってどう? 仮説を立てる際は、1つの切り口に固執せず、複数の視点からアプローチすることが重要です。異なる視点を網羅することで、問題の原因や解決策を多角的に捉えることが可能になります。フレームワークを活用すれば、自分の思考の幅を広げながら、多様な仮説を漏れなく立てることができるでしょう。 仮説の種類は何? また、仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、時間軸に沿ってその内容が変化することも特徴です。仮説検証のプロセスでは、既存のデータ(売上数値やアンケート結果、市場調査レポートなど)を活用する方法と、必要に応じて新たにデータを収集する方法が考えられます。 反証データは必要? 検証にあたっては、自分の仮説を支持するデータだけではなく、反証となるデータも積極的に集めることが不可欠です。都合の良いデータだけを選別すると、結論が誤るリスクが高まるため、幅広い視点から情報を収集する姿勢が求められます。 各視点はどう整理する? 以上のように、仮説は「What」「Where」「Why」「How」といった4つの視点を意識して整理する必要があります。仮説の網羅性と多角的視点、そして反証データを意識することで、広告運用の分析の質や精度向上につながると感じました。たとえば、キャンペーンの予算配分の最適化やランディングページの改善、広告クリエイティブの効果向上、新たなターゲティングの発掘などに対して有効なアプローチだと思います。ただし、優先順位の付け方がまだ未熟な部分があるため、初めはさまざまな切り口での仮説検証に取り組んでいきたいと思います。

アカウンティング入門

数字に隠れた学びのヒント

数字に挑む理由は? 数字に対して漠然とした苦手意識がありましたが、「数字を語らずして趣味を楽しむことはできるか?」という問いに衝撃を受けました。また、ライブ授業中に「事業が順調に進んでいる指標は何か?」という問いもいただき、最終的にはROICなどの指標が鍵になるのではないかと考えました。 成果は投資効率で? たとえば、売上が100億円あっても500億円の投資をしていれば事業は成功しているとは言えません。同様に、利益が100億円であっても500億円の投資があれば良い結果とは言い難いです。さらに、営業利益率が10%であったとしても、投資に必要な資本の調達コスト(資本コストやWACCなど)が15%であれば、効率的なアウトプットとは言えません。このようなことを考えると、インプットに対してどれだけ効率的にアウトプットができているかという観点が、事業の健全性を評価する指標として適切だと、グループディスカッションで感じました。 決算書はどう見る? また、自社の決算書を改めて見直すと同時に、推薦された参考図書「決算書100本ノック」も読み、業界ごとの特徴(例えば、不動産業界は有形固定資産が多いなど)を大まかな数字で把握したいと考えています。 対等な議論は可能? 会計やファイナンスの専門家になることが目的ではなく、彼らと対等に議論できるようになり、自分なりの意思決定の軸を持ちたいという思いから、アカウンティングやファイナンスの学習に参加しました。しかし、どのレベルまで理解すればよいのか悩む部分もあります。(もしかすると、これが今回のナノ単科の学習範囲なのかもしれません) AIとどう共存する? さらに、今後のAI時代においても意思決定は人間が行うべき重要な仕事であると感じています。そのため、アカウンティングやファイナンスの視点から意思決定を行う際に、AIとうまく付き合い、活用する方法を知りたいと考えています。

戦略思考入門

経済の視点で業務を進化させる方法

生産性の向上は? 生産性の向上と効率化を目指す中で、費用対効果や稼働対効果を意識することが売上と利益に直結するという認識を新たにしました。 規模経済はどう? 規模の経済について、コスト削減のために発注量を増やすだけではなく、需要と供給のバランスや物理的なリソースの確保など、総合的な影響を見極めた上での判断が重要です。 範囲経済を理解? 範囲の経済については、関連や類似の業務を統合またはカスタマイズすることで、ゼロからではなく既存の知見や資源を有効に活用して改善を図ることができるという点に注目しました。 経済の意味は? 「経済」という用語自体は馴染みがありませんでしたが、実際の事例を用いた説明により、その意味を改めて理解することができました。 論理構築のコツは? 総合演習を通じて、与えられた情報に安易に頼るのではなく、必要な情報を収集して自らの論理で結論を導き出すことが、仮説の精度を上げることに繋がると感じました。他者と意見の相違が生じた際には、その差分を明確にし、次のステップに活かすことが重要です。 業務効率を改善? 現在、BtoB向けの新規顧客獲得業務を担当しており、ターゲットによる組織内でのセミナーが重複しているため、効率的ではありません。今後、業務役割に基づく組織統合を進め、固定費やコミュニケーションコストの見直しを図ります。 一体化の道は? 総合演習を通じて、多面的な視点での論理構築と、自身の考え方をしっかり持つことを意識していきます。2025年3月までに、類似する業務を持つ組織との統合を調整し、分断されていた役割やコミュニケーションコストを改善し、一体化した業務運営を目指します。 将来の決断は? 次期中期計画では、●●の経済の考え方を認識しつつ、目先の改善に飛びつくことなく、潜在的な影響までを考慮した高い意思決定を目指していきたいと思います。

アカウンティング入門

カフェ事例で解く利益と価値の秘密

顧客価値はどう捉える? カフェのケーススタディでは、「顧客への価値を考える」という現業の企画・マーケティング要素が盛り込まれており、イメージがつかみやすかったです。この事例を通して、企業が提供する価値と損益計算書の読み方を意識するようになりました。 利益はどう違う? また、「利益」と一括りにすると、どこで利益が出たのか、または損失が生じたのかが分かりにくいと感じました。5種類の利益(売上総利益、営業利益、経常利益、税前当期純利益、当期純利益)の違いを学ぶことで、それぞれの意味が理解できました。 複数事業の見方は? 今回の事例はカフェという単一事業のみを扱う企業に焦点を当てていますが、実際には複数の事業を展開する企業も多いのではないかと疑問に思いました。財務三表の中では、PLは基本的に企業ごとに一つですが、複数事業で構成される場合、損益計算書の見方や事業(部門)ごとのPLの存在についても気になったので、復習時に詳しく調べたいと思います。追って、各部門ごとに作成される「部門別損益計算書」が存在するとの情報も得ました。 競合と自社はどう違う? この学びは、企画立案時の事前調査や他社の分析と比較に活かしたいと考えています。企画段階では、すでに決まった予算の範囲内で進めることが多いですが、競合他社のPLを比較することで、どこで利益を生み出せそうかを意識し、費用投資を検討する視点が身につきました。同時に、競合他社とは異なる、自社ならではの提供価値を大切にしていくことも改めて認識しました。 業界特性はどう読む? 今後は、競合他社のPLの確認と比較、さらには小売や製造など異なるビジネスモデル間でのPL比較を通して、それぞれの業界特性や提供価値を考慮しながらPLを見る習慣をつけるとともに、部門別PLがある企業と、1つのPLに集約される場合との違いについても確認していきたいと考えています。

クリティカルシンキング入門

問い直しで切り拓く課題解決

本質はどこにあるの? 問題解決に取り組むにあたり、どこに問題の根源があるかを明らかにすることの重要性を学びました。たとえば「売上が上がっているのはなぜか」という問いから出発することで、課題の本質に迫る第一歩となると理解しました。 問いはどう変わる? また、最初に設定した問いが業務を進めるうちにぼやけたりずれたりするリスクがあるため、常に問い直す意識が必要であることも印象に残りました。この点は、今後の実務における課題解決に直結する重要なポイントです。 論理の骨組みは? さらに、「イシューを特定する」「論理の枠組みを構築する」「自らの主張を適切な根拠で支える」というピラミッドストラクチャーのステップを徹底することが、クリティカルシンキングの実践につながると感じました。 評価制度の課題は? 実務現場では問題を特定し、改善に結びつける場面が多々あります。現在の課題の一例として、評価制度の運用が挙げられます。昨年4月に人事制度を改定し、公平かつ公正な評価を目指して設計・運用を始めたものの、現場からは十分な納得感が得られていません。原因としては、以下のような点が考えられます。 ・評価制度の設計そのものに問題がある ・評価者のスキル不足 ・被評価者の制度に対する理解不足 ・制度説明の不足 具体策はどう組み立てる? この中から最も効果的な改善案を見出す必要があります。今回学んだ「本質的な課題を捉える問いの立て方」を活かし、まずは上期の評価フィードバックアンケートの結果を分析します。「なぜ納得感が得られないのか」という問いを軸にイシューを特定し、その後、ピラミッドストラクチャーを応用して論点を整理します。具体的な行動計画としては、次回の評価制度会議までにアンケート結果を分類し、主要な3つのイシューを抽出、並びに改善案の骨子を作成する予定です。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

クリティカルシンキング入門

小さな視点、大きな発見

データはどう見える? 一次データだけでは見えてこない傾向があるため、データをさらに細かく分け、グラフなどのビジュアル資料で確認することが重要です。 切り口の意味は? 刻み幅や意味のある切り口に基づく分け方を意識し、仮説を立てながらデータを整理することで、分け方によって異なる結論が導かれる点に注意が必要です。 全体像の正確把握は? 分解して検討した結果、特徴的な傾向が浮かび上がったとしても、それが全体を示すものではありません。すぐに結論を出さず、自分自身を疑う姿勢を持ち、思考の制約にとらわれないよう心がけることが求められます。MECEの考え方を活用しながら、全体を部分に分ける階層分解、売上を単価と数量に分ける変数分解、そして業務プロセスごとに分けるプロセス分解の手法を上手に使い分けるとよいでしょう。 分析の焦点は? 例えば、変数分解を用いてメンバーそれぞれの売上傾向を分析する際には、まず優れた成績の例と比較して単価や数量のどちらに課題があるかを明確にします。単価に問題がある場合は、コンタクト先を階層分解してどの層へのアプローチが不足しているのかを検討し、販売数量に問題がある場合は、プロセス分解を通じてどの業務プロセスに時間がかかっているのかや課題が潜んでいるのかを明確にすることが効果的です。 販売戦略の再考は? また、商品販売では、階層分解を活用して販売好調な商品の傾向を把握することが重要です。購入者を細かく分けることで、より明確なターゲット層を設定し、戦略の見直しに役立てることができます。 成果と速度の両立は? 実際の業務では、質の高い成果とともにスピードも求められます。トレーニングの積み重ねによって両立が可能だと考えていますが、実際の業務でどのように質とスピードを両立しているか、具体的な方法があればぜひお聞かせいただきたいです。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。
AIコーチング導線バナー

「売上 × 意識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right