戦略思考入門

選択と集中で未来を切り拓く方法

定量だけで良いの? 企業で働く私たちにとって、企業方針に沿った売上と利益の追求がビジネスの本質だと考えています。しかし、定量的な側面だけで意思決定を行うのは不十分で、多面的な視点から評価し、定量情報と定性情報を組み合わせることで、最適な意思決定を行う必要があります。その判断が正しかったかは実行後の結果からわかるため、短期間での振り返りと必要に応じた修正が重要です。 何を優先すべき? 「取捨選択」や「選択と集中」を常に意識していますが、改めて重要なのは、何を優先すべきかに注力することです。時にはビジネスの慣習に囚われず、思い切って無駄を省くことの重要性を再確認しました。期の節目には活動を振り返り、評価が厳しいものについては、その継続や中止をプロとコンスで整理してみることも良い方法だと思います。 具体的な施策は? 最近の具体的な捨てる施策としては、2024年10月から一時的に自社製品単体でのウェビナー開催を中止しました。顧客獲得が鈍化し、稼働対効果や費用対効果が合わず、メンバーのモチベーションも低下したためです。代わりに、複数の製品を組み合わせたセミナーイベントを企画し、顧客にとって魅力的で価値あるコンテンツを提供していきます。 新たな接点を見つける? また、リアルセミナーでは、顧客と営業担当との新たな接点を作る目的を設定し、単なる顧客獲得にとどまらないゴールを目指しています。PDCAサイクルを回しながら、必要ないものを捨て、継続すべきものや改善が必要なものを見極めて取り組みます。 今後の計画は? 年末を迎えるにあたり、チームメンバーには現在の業務を見直させ、過去の延長にある業務を棚卸しするよう指示し、2025年度からは取捨選択した新たな活動に取り組む予定です。2025年1月から実施する新たな代替策の成果を、稼働対効果や費用対効果、顧客獲得や売上の視点から評価し、それを2025年4月からの新しい活動方針に活かしていきます。そのため、管理者と中期的視点で戦略を練り、ゴールを設定し、2025年3月までにチーム全体に浸透させる計画を進めています。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

データ・アナリティクス入門

営業の新たな武器:ロジックツリー活用法

問題解決にステップで挑む理由は? 問題について「ステップで考える」という当たり前のことができていないことに気づけました。自分の場合、ヒューリスティックに考える癖があり、アルゴリズム的に考えるのが苦手です。文中の「ステップで考える」とは、自分にとって苦手なアルゴリズム的な手法を指しますが、その手法としてロジックツリーの有用性を学べたことが大きな収穫でした。 ロジックツリーの具体的活用法とは? また、ロジックツリーの知識はありましたが、具体的な活用方法を改めて学べたことも大きいです。営業として売上分析をする際にMECE(Mutually Exclusive, Collectively Exhaustive)を意識していましたが、パレート分析に頼ることが多く、満足のいく結果を得られないことが多々ありました。今後はロジックツリーも活用してみたいと考えています。 今回学んだ「ステップで考える」方法やロジックツリーを用いて問題を分析し客観視させることで、問題意識の共有と具体策の議論が行えると期待しています。 社員教育の脆弱性をどう改善する? 私は所属する事業部で社員教育の脆弱性を強く感じています。問題提起を上席者や同僚に行っても、具体的な解決策の議論まで進めないことが多くありました。振り返ると、私の提案がMECEになっておらず、同意は得られても他者を巻き込むことができなかったと感じています。まずは自分の問題意識をロジックツリーに落とし込む作業を業務の合間に行おうと思います。 社員教育の必要性をどう確立する? 具体的には、社員教育の必要性についてロジックツリーを展開しようと思います。まずは「社内」「社外」という切り口で悪影響を及ぼす具体例のツリーを作成します。次に「研修制度」と「自主的な学び」という切り口で現状を示します。最後に、これらを強化・促進するための案を示し、上席者だけでなく同僚へも問題提起しようと考えています。 さらに、他の提案や営業政策などにもロジックツリーを活用してみるつもりです。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

戦略思考入門

経営戦略を実践する私の新たな視点

経営視点はどう考える? 経営者や株主の視点で、自社や他社を観察することの重要性を感じました。最近の例では、あるコンビニの親会社が事業を整理し、コンビニ事業に専念する動きが見られます。また、売上高30兆円を目指し、コストリーダーシップを取ることも必要だと考えました。 値下げ戦略は何故成功? 牛丼チェーン店が値下げキャンペーンを実施できるのは、業界内でリーダーシップを保ち、必要な市場シェアを持っているからだと思います。さらに、ある大手スーパーの自社ブランドが値下げを行い、物価高に敏感なユーザーに同品質の他社ブランドに負けない価格を提示しています。このような集中戦略で、他社ブランドのシェアを削り、自社ブランドのシェアを拡大していると考えました。 現場意識はどう変わる? 私自身が製造業に従事していることを踏まえると、経営層はこのような戦略を実行しているものの、非経営層の私たちにはその意識が薄いのではないかと感じました。そこで、今回学んだ内容を基に、リーダーシップを発揮している他社と自社の戦略を比較し、自社の強みを意識することが重要だと考えました。 委託先選定はどう見る? さらに、自社の物品購入先や生産設備の外部委託先がどのようなVRIO分析や差別化戦略を行っているかを調査し、それを活用することで、委託先の選定に役立てたいと思いました。 投資戦略をどう判断? また、新たにNISA枠を活用する投資の際には、投資先のリーダーシップや差別化戦略を総合的に評価し、判断することが重要だと考えます。加えて、iDeCoやふるさと納税に加え、エンジェル税制の優遇措置を活用することで、起業から10年未満のスタートアップが既存企業のシェアを奪う可能性を評価するための基準として、VRIO分析や差別化戦略を使うことが有効だと感じました。 工場の位置はどこ? そして、自社の委託先の工場がこれらのフレームワークのどこに位置するのかを見極め、将来の委託先選びにおいても役立てられると考えています。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。

マーケティング入門

営業店の心を掴むバックオフィス戦略

マーケティングの本質とは? マーケティングの基礎的な役割について学び、特に「マーケティングの役割は販売の必要性をなくすこと」という考え方が印象に残りました。これは、顧客が自然と商品やサービスを選びたくなる仕組みを作ることがマーケティングの本質であり、単なる営業活動の補助ではなく、顧客との信頼や価値提供を通じて成り立つものだと理解しました。また、「マーケティングとは顧客に買ってもらえる仕組みを作ること」という視点も重要で、単純な売上増加ではなく、顧客が求める価値を見極め、それをいかに提供するかが鍵であると感じました。 バックオフィス業務の新たな視点 私は現在バックオフィス業務を担当しており、営業店のフォローや業務効率化、工数削減を主な役割としています。そこで学んだマーケティングの考え方に基づいて、バックオフィス業務も営業店に「選ばれる存在」になることが重要だと気づきました。具体的には、営業店にとって我々のサポートが単なる補助ではなく、「これがあるから安心して営業活動に集中できる」と思ってもらえる仕組みを作ることを目指したいと考えています。そのためには、営業店が抱える課題やニーズを深く理解し、業務の「良さ」や価値を適切に伝える方法を考える必要があります。 知識をどう実践に活かす? マーケティングの知識を実践に活かすためには、まず仲間との反復的な共有を行うことが有効です。例えば、学んだことを週次で共有するミーティングやディスカッションを通じて、自分の業務にマーケティングの考え方を落とし込む練習をしています。また、6週間という限られた期間で「予習」と「復習」のサイクルを構築し、学んだ単語や知識を確実に定着させることを意識しています。さらに、具体的な行動として営業店とのコミュニケーションを増やし、現場で必要とされるものをヒアリングする機会を設けたいと考えています。その情報を基に、魅力を感じてもらえるような提案や支援を行い、バックオフィスの存在価値を高めていきたいと思っています。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

「売上 × 意識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right