クリティカルシンキング入門

グラフでひも解く生産実績の裏側

データ分解で何が見える? データを分解することで、見え方が大きく変わることに気づきました。単にデータをそのまま利用するのではなく、加工して項目を追加したり、分析のための新たな軸を設けたりすることが必要であると理解できました。こうした様々な視点からの検証が重要なため、グラフ化はそのための必須作業だと実感しています。 稼働時間はどう分析? また、日々の生産実績において、稼働時間と停止ロスの項目を全体的に定義し、MECE(漏れなくダブりなく)の考えに基づいて設定する取り組みの重要性も感じました。グラフ化によって、どの項目が停止ロスの要因となっているのかを明確に分析でき、各項目の傾向を監視することで、停止ロスの詳細な分析と対策の策定に活かすことが可能です。

戦略思考入門

論理と感性で描く新たな未来

どんな姿を目指す? この6週間で、自分が目指すべき姿を明確にすることの大切さを実感しました。改めてありたい姿について考える機会を得ることで、今後進むべき方向が見えてきた気がします。 習慣にする理由は? また、フレームワークを用いた分析を通じ、根拠に基づいて大胆な取捨選択を行う力を養うことができました。今後は、この学びを日々の習慣とし、常に論理的な視点で物事に取り組めるよう努めたいと思います。 業界分析の極意は? さらに、感覚や単なる事例に頼った提案ではなく、クライアントの業界全体を見渡しながら、フレームワークを活用して徹底的に考察する姿勢を身に着けることが必要だと感じました。こうした意識や習慣が、新たなアイデアの源泉になると確信しています。

マーケティング入門

お客さま視点で磨く戦略の極意

お客中心の視点は? マーケティングは、商品中心になりがちな市場分析ではなく、まず相手、つまりお客さまを起点に考えることが大切だと実感しました。実際、商品の現在の価値だけでなく、お客さまの将来の姿までイメージすることで、より深い視点で戦略を練れるのではないかと思います。 営業現場って大事? また、届ける相手はお客さまだけでなく、営業現場も含まれます。営業現場を通じてお客さまに情報や価値を伝えるため、営業現場の視点や利益実感も同時に意識した施策が必要だと感じています。 自社活用はどう? これからは、お客さまと営業現場の属性や考えをさらに深く理解した上で、自社のリソースがどのように活かせるかを見極め、計画を立てて展開していきたいと考えています。

クリティカルシンキング入門

多角的視点で拓く課題解決

なぜ視点を広げるの? どうしても最初に目に付いた課題に意識が偏ってしまうことが自分自身の課題だと痛感しました。複数の視点から問いを掘り下げ、その中で最適な解決策を選ぶプロセスを何度も繰り返すことで、自然にその手法が身につくレベルへと高める必要があると感じています。 どうして全体をとらえる? また、私の業務では人事制度の課題を分析し、効果的な対応策を企画・実行することが求められています。これまで、分析しているつもりであっても、全体を網羅する視点が不足しており、目につきやすい課題に飛びついて対処してしまう傾向がありました。今後は、課題を細かく分解し、複数の観点から最適解を選ぶプロセスを、自然に実践できるレベルに自分を鍛えていきたいと考えています。

データ・アナリティクス入門

戦闘機と株価が示す成長のヒント

なぜ戦闘機の事例が印象的? 戦闘機の事例が特に印象に残りました。生存するために必要な要素と不要な要素という視点で分析する方法について、従来「帰還した機体」と「帰還しなかった機体」だけで捉えていた自分にとって、大変新鮮な学びでした。 仮説検証の手法は? また、演習では2つのアプローチが示されました。ひとつは、自己が立てた仮説に対してエビデンスを提示する仮説検証の手法です。この方法は、仮説の正確性を確認するために非常に有効だと感じました。 企業成長性の判断は? もうひとつは、企業の成長性を判断するための方法です。演習で株価推移の比較を通じて、複数の論点を設けることで、個人のバイアスに左右されずにロジカルな判断が可能になる点が印象的でした。

クリティカルシンキング入門

全体像に迫る分析の妙技

各項目の整理は? 分解作業では、まず各項目をMECEの視点で整理することの重要性を再認識しました。一つ一つを個別に洗い出し、漏れや重複がないようにすることで、確実に全体像を把握できると感じました。 伝える工夫は何? また、手元にある数字をそのまま確認するだけでなく、伝えるべき内容に合わせた見せ方を工夫することで、情報の本質を効果的に伝えられる点にも気づかされました。 分析で何が見える? さらに、ブランドの売上数値などを分析する際には、間口や奥行、性年代など、複数の視点で深堀りする工程が、問題点や潜在的なチャンスを特定するのに役立つと実感しました。定量的な調査結果も、事実を正確に維持しながら有意義な提案へと活かせる点が印象深かったです。

戦略思考入門

SWOT分析で見つけた新視点

分析手法はどう活かす? 3C分析やSWOT分析が特に学びになりました。普段、顧客のニーズには気を配っているものの、市場のマクロな視点が不足していると気づく機会となりました。SWOT分析では、頭の中でなんとなく考えていた内容が図式化されることで整理され、今後も活用していきたいと感じました。 実務で何を感じた? 自分のクライアントワークにおいて、これらのフレームワークが大いに役立つと実感しています。特に初動でプロダクトの方針を定める際、分析を通じて顧客と互いの弱みや強みを共有し、具体的な方針の策定につなげることができると思います。双方の認識のずれを防ぎ、現状の課題や強みを明確にすることで、その後のプロダクト拡張にも寄与すると考えています。

データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。

クリティカルシンキング入門

データが語る学びのワクワク発見

どう切り口を見極める? 数字の分析において、与えられた情報をそのまま受け取るのではなく、細かく分解し、どの切り口が有効であるかを見極める重要性を再認識しました。複数の視点でデータを分解すると、異なる結果が導かれることが印象に残っており、分析の際にはMECE(漏れなく、重複なく)を意識することが大切だと感じました。 実務はどう評価する? 実際の業務では、データ分析を行う機会は少ないものの、マーケターの提案内容を確認する際には、情報を細分化し、複数の切り口で評価する手法を取り入れています。また、トラブル対応においても、確認すべき事項がMECEになっているかを念頭に置きながら進めることで、より確実な対策を講じることができると考えています。

クリティカルシンキング入門

表の魔法で伝える新発見

グラフの使い方は大丈夫? 業務での資料作成においては、これまでグラフの利用は補助的な役割と考え、あまり意識して作成していませんでした。しかし、伝えたいメッセージや情報の配置を工夫する上で、シンプルな表であっても読み手が混乱しない仕組みや表現の重要性に気づかされました。 どんな表が伝わる? 今後は、単に表を作るのではなく、その表から伝わるメッセージを大切にしていきたいと考えています。情報量が過度にならず、適切に表現されるよう、特定の分析資料や集計結果などのひな型を作成し、効果的に活用していきたいです。また、どの表現にどのグラフやテクニックを用いるかを、常に読み手の視点に立って工夫することで、より分かりやすい資料作りを目指します。

戦略思考入門

戦略思考の土台を築く挑戦

戦略ツールで何を学ぶ? SWOT分析、3C分析、PESTなどのフレームワークを学んだことで、内外の環境を捉える視点が広がり、戦略の土台構築について理解が深まりました。どのようなツールが戦略策定に役立つのか、具体的なイメージを持つことができました。 技術戦略の意義は何? さらに、担当領域における技術戦略の基盤作りにこれらのフレームワークが有用であると感じ、どのような課題やチャンスが存在するのか、改めて考えるきっかけとなりました。 実践の展望はどう? 今後は、実際に3C分析、SWOT、PESTを活用し、業務改善や具体的なシナリオの構築に挑戦することで、技術開発提案書作成の背景となる土台づくりを進めていきたいと考えています。

データ・アナリティクス入門

平均を極めるデータ思考

どの平均値を選ぶ? どのような状況でどの平均値を使うべきかについて学ぶことができ、非常に有益でした。今まではさまざまな種類の平均値を扱ってきましたが、加重平均や幾何平均を利用する理由については深く考えたことがありませんでした。今後は、背景にある意図を意識し、何のため、なぜその平均値を選ぶのかを明確に捉えたいと思います。また、より適切な平均値を選択できるよう努めたいと考えています。 データの見方は? 一方、データ分析においては定性分析の要素が多いことから、平均値を用いる際にはデータの読み解きに十分な注意が必要です。業務に活かすためには、どの視点からデータを捉えるか、そして他の視点が存在しないかを検討することが大切だと感じました。
AIコーチング導線バナー

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right