データ・アナリティクス入門

フレーム活用で広がる分析の新視点

授業で何が学べた? ライブ授業では、分析のプロセスを体系的に学びました。複数の仮説を立て、それを検証することで問題解決に取り組む手法が非常に効果的であると実感しました。また、事象を考察する際には、フレームワークの意識が基礎となる重要なスキルであることを学び、これを身につけたいと感じました。 今後の戦略は? 今後は、分析ツールを利用する際にも、フレームワークを大切にしながらアプローチしていきたいと思います。普段から現場の社員にヒアリングを行い、データの内容や背景を深く理解することで、より具体的かつ有用な分析ができるよう努めます。 成果をどう伝える? その上で、収集したデータを効果的に可視化し、社内のメンバーにわかりやすく説明できるよう、引き続き努力していきたいと考えています。

データ・アナリティクス入門

焦らずじっくり、物語で解決

どの結果を目指す? 分析に取り組む際、すぐに手をつけがちですが、まずは結果をイメージし、どのようなストーリーで進めるかを考えることが非常に大切だと感じています。What、Where、Why、Howの各視点を意識することで、問題解決へのアプローチが明確になると思います。 焦らず目的は何? また、分析業務の増加に伴い、結果を急ぐあまり焦ることがありました。しかし、焦るのではなく、目的を明確にし、ストーリー構築に十分な時間をかけるべきだという考えに至りました。これまでは十分な計画を立てずに作業を進めた結果、自分の苦手な部分が露呈していたと実感しています。 広い視野で挑む? 今後は、課題解決に向けた仮説の設定やストーリーの構築を、より広い視野で取り組んでいきたいと考えています。

戦略思考入門

実践に生きる学びのヒント

実践活用の方法は? 今週は講義全体の振り返りを行いました。学んだ知識を自分に落とし込むためには、実際に活用するしかないと感じています。明確なゴールに向かう道のりを描くため、フレームワークを用いた多角的な分析が有効だと実感しました。一部の情報だけに頼った分析では、効果的な戦略を描くことは難しいため、バランスの取れた視点が大切だと考えています。今後は業務の中でこれらの学びを実践し、定着を図っていきたいと思います。 戦略はどう考える? また、自分が担当する課の方向性や今後の戦略を検討する際に、講義の内容が大いに役立つと感じています。他者との差別化を維持しながら持続可能な戦略を立てるために、今後も変化する環境に柔軟に対応しつつ、長期的な視点を持って取り組んでいきたいと考えています。

データ・アナリティクス入門

グループで広がる新たな学び

6週間の学びを振り返る? いちから学習を振り返ると、6週間という短期間にも関わらず多くの学びがあったと実感しました。特にグループワークでは、自分にはない視点や思考方法に触れることができ、学習全体において非常に有益な経験となりました。 事前認識のポイントは? また、事前の認識確認を通じて、分析したデータの活用方法に齟齬が生じないよう留意するという点も、重要な学びでした。 案件獲得時の考察は? さらに、案件獲得に際して、顧客が何を求め、他社製品との比較でどの点が優れているのか、またアピールすべき特徴を検討する際に、今回学んだ比較・分析の手法を活かしていきたいと考えています。同時に、偏った思考に陥らず、他者の意見に耳を傾け、一度立ち止まって考えることの大切さも痛感しました。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

クリティカルシンキング入門

見落とさない!分解思考のすすめ

分解のメリットは? 数字の分析において、まず各要素に分解することが非常に効果的であると学びました。たとえ特定の切り口が顕著な兆候を示していても、他の視点から検証し、見落としがないか批判的に見直すことが大切だという点が印象に残りました。 MECEって何だろ? また、分解を行う際には、まずその切り口全体の定義を明確にすることで、情報が重複せず抜け漏れなく整理される(MECEの考え方)というコツも習得しました。これを踏まえ、会社内での人材や各種KPIなど複数の視点から実践していく予定です。 サーベイの分析はどう? 特に、先日実施された全社のエンゲージメントサーベイを改めて分解し、分析することで、さまざまな事象の要因をより明確に見定められるのではないかと考えています。

データ・アナリティクス入門

仮説検証で磨く伝わる分析術

どんな学びがあった? 今回の学習を通じて、自分の不足点や修正すべき点を改めて確認することができました。 仮説検証は十分? まず、仮説を検証する過程で、データの取得や加工は行ってきたものの、否定的な視点からその仮説が正しいかどうかを十分に検証する必要があると感じました。次に、分析時には適切なフレームワークの活用が重要であると再認識しました。さらに、結論をまとめた際、相手に正しく情報を伝えるために、グラフなどの視覚資料の選び方や説明の仕方が大きく影響することも学びました。 改善に向けて何? これらの学びを生かし、今後は自己の課題や修正点に注意しながら、分析や報告の方法を工夫していくことで、上司の理解や納得を得られる報告資料を作成していきたいと考えています。

クリティカルシンキング入門

数字の切り口で拓く学びの扉

データの切り口は? 数字やデータに意味を持たせるには、まず複数の切り口から考察することが重要だと学びました。どの切り口を採用するかで迷うよりも、まずはデータを分けてみることの大切さを実感しました。 全体像はどう組み立てる? また、分け方をする際は全体像を意識し、MECEの原則に則ってダブりなく網羅的に整理する必要があると認識しました。この考え方は、他社の財務数値や事業の分析にも十分に活用できると感じています。 数値変動の真意は? さらに、財務数値の変動を分析する際は、単に売上や利益の増減を追うのではなく、事業ごとの売上の変化や費目ごとの増減など、より細分化して捉えることの重要性を再確認しました。今後は、より一層細かい視点での分析を心掛けていきたいと思います。

データ・アナリティクス入門

新たな視点で未来を切り拓く

分析の目的は何? 分析の目的や検証したい仮説を明確にすることで、アウトプットの内容が大きく変わると感じました。いきなり分析に着手するのではなく、どの切り口を採用するかを検討することで、分析の精度が向上すると実感しています。 新たな視点はどう捉える? これまで、売上データの分析など同じ流れで進めてきた結果、似たようなアウトプットになっているという課題がありました。そのため、今後は新たな視点を導入し、自分自身やチームのメンバーが新しい気づきを得られるよう意識していきます。 バイアスをどう排除する? また、従来のバイアスをできる限り排除する分析手法と、その結果をチーム全体で共有する取り組みを進め、具体的な施策につなげられるよう努めていきたいと考えています。

戦略思考入門

論理で明かす経済性の秘密

規模の経済性をどう捉える? ゲイルで学んだ規模の経済性と習熟効果は、これまで感覚的に感じていたことが論理的に整理され、非常に印象に残りました。また、バリューチェーンと範囲の経済性についても、自社の資源を他の事業で活用する際に、新規事業検討のための自社分析や市場環境の把握が重要であると再確認できました。 新戦略のヒントは何? ウェブサイト運営で新しいコンテンツを検討する中、これまで感覚に頼っていた部分を、今回学んだ独自性、模倣困難性、そして顧客に対する価値拡大の視点を取り入れることで、より具体的かつ戦略的なアプローチが可能になりそうです。 理論で見つけた気づきは? また、ビジネス経験を理論化し言語化することで、新たな気づきを得られたことが大変有益でした。

クリティカルシンキング入門

変数×層別で挑む業務の新解釈

分解の軸は正確? 業務上、さまざまな課題に取り組む際、プロセス分解を用いることが多いと感じています。実際、課題を分解するときに「いつ」「誰が」「どのように」という軸を意識して切り分けていますが、多角的な視点から分解することにはまだ慣れていないと実感しています。 切り口の工夫はどう? そのため、今後は層別分解や変数分解といった切り口も取り入れ、事象ごとに工夫して分析できるよう努めたいと考えています。これらの手法を使うことで、業務上のプロセスに対する課題解決に一層取り組んでいく所存です。 結果の正確性はどう? また、資料作成や他者への説明の際にも、層別分解や変数分解を活用し、分解した結果や解析内容が正確かどうか再確認することを心掛けたいと思います。

クリティカルシンキング入門

手を動かして見つける新発見

視点の違いって何? データの断面によって得られる情報はそれぞれ異なるため、まずは様々な視点からデータを捉えることが大切です。データを並べ、一度エクセルなどで手を動かしながら、細かい作業を加えることで新たな発見につながります。 仮説の鍵は何? また、切り口を出すためには仮説を立て、自ら考える姿勢が必要です。イシューに対しては、どんな考え方があるかを因数分解するように整理し、多角的に検討する手法が効果的です。 答えの見極め方は? さらに、データ分析では、求める答えを明確にしたうえで仮説を構築し、切り口を設定することが求められます。自分の考えだけでなく、周囲の意見も取り入れることで、より多角的な視点から論点を整理し、深い理解につながるでしょう。
AIコーチング導線バナー

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right