データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

データ・アナリティクス入門

問いから始まるデータ探求

仮説はどう作成? データ分析において、まず仮説(問い)をどのように作成するかが重要であると再認識しました。解説で提示された「地元のネットワークを構築できなかったから」という視点は、私にとって新たな発見でした。また、仮説自体の数が少なかったことから、問いを思いつくためのトレーニングが必要だと感じました。 中央値の適用は? 代表値、特に中央値の用い方についても多くを学びました。アンケート分析などにおいて、平均値が低いという理由だけで意図的に中央値を用いるのは適切ではないという指摘は、慎重な判断が求められると実感させられました。 平均値は信用できる? 報道などで目にする数字の平均値だけに頼るのではなく、しっかりと問いを立て、調査することの大切さを改めて考えさせられました。 最適なグラフは? また、伝えたい内容や主張に合わせて最適なグラフを選定する方法を検討し、Excelなどで実際に作成してみることが有効だと感じました。問いを立て、その根拠となるデータを調べ考察する訓練の重要性も実感しました。

データ・アナリティクス入門

目的を見据える分析の一歩

どんな学び方がある? 今週は、正直何をすればよいのか、どう学び、どのようにグループワークを進めればよいのかが分からず、新しいインプットがほとんど得られなかったため、少し物足りなさを感じました。もっと手を動かして分析に挑戦してみたかったという思いがあります。 目的を見いだすコツは? 目的を明確にして分析を始めることが大切です。一つのデータや事象に固執せず、視点を変えて全体を俯瞰しながら取り組む姿勢が求められます。常に目的を意識し、仮説検証が難しいときは生成AIの力も上手に活用していくことが重要だと感じました。 目的をどう守る? また、仮説思考でクリティカルに考える習慣を身につけるため、業務に取り組む際には常に目的を意識する必要があります。部下が目的を見失わないよう、状況確認を行うことも意識して取り組んでいかなければなりません。 広報の立ち位置は? 現在の広報業務においては、この仕事がマーケティングファネルのどの位置にあたるかを常に考えながら進めていくことが求められると強く感じています。

データ・アナリティクス入門

データで広がる学びの可能性

仮説はどう広がる? フレームワークの視点を活用することで、仮説の幅を広げることができます。既存のデータを活用する方法と、新たにアンケートなどでデータを収集する方法の二つがあります。まずは自社や公表されているデータから問題を絞り込み、次に知りたいことを軸に必要なデータを集める流れが重要です。 急変時に何を検証? あるデータが急に増減した場合、時間をかける前にまず仮説を立て、その仮説を裏付けるためにどのデータが必要かを検討しながら分析を開始することが求められます。ひとつのデータに固執せず、同時期の他のデータも合わせて確認することで、多角的な視点が得られるでしょう。 データ整理はどう進む? 業界では多くの公表データが存在しますが、それぞれのデータに何が含まれているのかを把握できていないケースがしばしばあります。まずは各データの整理を行い、その上で社内に共有し、他部署とも同じ視点で把握するよう努めます。直感や経験に頼るだけでなく、データで検証するという姿勢を社内に広めていくことが大切です。

デザイン思考入門

現場で生まれた共感の提案力

現場で何が分かった? IT業界でリサーチに基づくソリューション提案を行う中、デザインシンキングの実践が顧客の真のニーズに沿った提案を可能にすると実感しました。まず、顧客の現場に足を運び、業務を観察して共感を得ることから始め、データに基づいて本質的な課題を特定しました。その後、社内外の関係者を交えたワークショップを通じて多様なアイデアを創出し、モックアップやデモ環境を用いて解決策を可視化した上で、実際のユーザーテストとフィードバックを重ねることで改善を図りました。この一連のプロセスにより、製品機能の提案から脱却し、顧客の真のニーズに応じたソリューションを提供できるようになりました。 対話で見えた本質は? また、現場での観察や対話を通じ、顧客が本当に求めるものを深く理解する重要性を再確認しました。従来の単なる機能アピールから一歩進み、顧客と共に課題解決を目指すことで、信頼関係が築かれたと感じています。今後もデザインシンキングを積極的に取り入れ、顧客視点に立った提案を実践していきたいと思います。

データ・アナリティクス入門

仮説思考で拓く不動産プロジェクトの未来

効果的な仮説立案方法とは? 仮説を立てる際には、3C(市場・顧客、競合、自社)と4P(商品、価格、場所、プロモーション)のフレームワークを使うことで、網羅的に考えることができます。その後、仮説を立案し、事実に基づいて仮説を絞り込む必要があります。仮説は結論の仮説と問題解決の仮説に分類できます。 データ整理のメリットは? 仮説検証の際に、自分の仮説を多く立てることができるようになります。また、手持ちのデータがどのフレームワークに関するものかを整理できるようになると、プロジェクトを始める際に手持ちのデータの種類と不足しているデータを把握できます。特に、自社や顧客については理解が深まっているものの、競合のデータについては入手が難しいため、今後の課題として力を入れたいと考えています。 不動産PJでの仮説思考は? 不動産に関わるプロジェクトを行っているため、海外の宅地購入や新規事業のPJを評価する際にも同様の仮説思考が役立ちます。特にエリア性と価格妥当性に対する理解を深めておきたいと思います。

クリティカルシンキング入門

小さな問いから生まれる大発見

問いの本質は何だろう? はじめに、「問い」とは何かを確認することが重要です。求められる答えの背景には、表面には現れない前提が存在するため、十分な擦り合わせがなければ正しい解答にたどり着くことは難しいです。主張を固める際は、その要素を分解し、論理的な根拠で埋めていく方法が求められます。 目的意識はどう伝える? 次に、データの加工や各種フレームワークを用いて主張を説明する際は、常に目的を意識する必要があります。たとえば、店舗の取り組みを従業員に周知し実行してもらう場合、目的・目標、そして根拠を明確に伝えることが重要です。課題表の作成も、この順番で進めると効果的です。 研修の根拠は何? さらに、新入社員の教育担当も行っており、その経験が研修方法にも生かされています。下準備が多く必要ではありますが、経験則や感覚に頼った研修では新入社員の再現性が低くなるのではないかと懸念していました。そこで、マニュアルに記載された各行動の根拠を分解し、根本的な理由から丁寧に説明することに努めています。

データ・アナリティクス入門

ロジックで描く理想への一歩

現状と理想の差は? 問題解決には、これまで「正常なあるべき姿」とのギャップを埋める施策が主流とされてきたが、実は「現在の正常な状態」から「ありたい姿」へのギャップを埋めることも、立派な問題解決だという点に気が付きました。 アイデアは何で生まれる? アイデアを生み出す際には、ロジックツリーのようなフレームワークを用いることが重要だと感じました。ただし、そのためには意味のある切り口が不可欠で、切り口となるパターンの数は経験によるところが大きいと考えています。 ロジックはどう活かす? また、現在社内で生じている問題に対して、ロジックツリーを用いて「WHY」と「How」を整理したいと思いました。これまで、あるべき姿と現在の状況を数値で示すことが難しい(もしくは手間がかかる)ため、取り組みが進まず、結果として抽象的な対策案に終始していた印象です。今後は、数値化したデータを基にロジックツリーを活用することで、より具体的で幅広い施策を検討できるのではないかと感じています。

戦略思考入門

戦略で描く理想の未来

学びの振り返りは? 今週は、戦略思考の講座全体を通して学んできたことを改めて振り返る機会となりました。毎週、知識のインプットとアウトプットを繰り返し、グループワークでは多くの良い刺激を受けてきた一方、全体を見直すと知識の一部が忘れかけていることに気づき、少なからず焦りを感じました。今回学んだ内容を確実に定着させるためには、意識的に活用し、実践を重ねながらアウトプットを繰り返すことが必要だと実感しました。 知識の活かし方は? また、戦略思考で得た知識は特に事業計画の策定に役立つと考えています。これまでは、現状と短期間の予測に基づいた計画しか考えていなかった自分に気づかされ、まずは目指すべき理想像を描くことから始める決意を新たにしました。変化が激しく不確実な状況の中で持続可能な競争優位を確立し、勝ち残るためには、今回学んだ知識とフレームワークを活用してさまざまな角度からデータを客観的に分析し、やるべきこととやらざるべきことを明確にして実践していくことが重要だと感じています。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

データ・アナリティクス入門

比較が教える新たな発見

分析の視点は正しい? 分析を行う際、「分析は比較なり」という視点を常に意識することが大切だと感じました。まず、分析の目的を正確に把握し、提示先の求める結果と意識を合わせることの重要性を学びました。また、比較する目的に沿って適切な軸を設定する必要性も再認識しました。 意見交換はどう進む? また、さまざまな業界の方々のご意見を聞くことができ、グループワークでは意見交換が活発に行われ、非常に助かりました。 データの意味は十分? 私はIT業界で、顧客向けのデータ分析やBIツールの活用を行うことが多いため、依頼内容をただ見える化するのではなく、分析の目的をしっかり意識し、データの意味を考えた上で最適なグラフを選択する必要性を感じました。そのため、データの格納方法や保持方法を含めたトータルな提案力を高めたいと考えています。 業界課題はどう見る? さらに、さまざまな業界が抱える課題や、それぞれがどのようにデータ分析を実施しているのかについても非常に興味深く感じました。

データ・アナリティクス入門

フレームが導く仮説と成長

体系的学習の成果は? 実践演習では、当初自分が考えていた解答がフレームワークの4Pに沿っていることに気づき、初めてフレームワークを意識する機会となりました。自然と頭の中でまとめていた内容が、体系的に整理されていることを実感し、非常に印象的でした。今後は、本日学んだ3Cや4Pに加え、これまで知っている他のフレームワークも積極的に活用し、網羅的な仮説構築に努めたいと考えています。 仮説と反論の重要点は? また、データ収集において自分が立てた仮説に対して反論を想定する意識がなかったことに気づかされました。この視点を取り入れることで、説得力を大いに高めることができると実感しました。マーケットリサーチに取り組む際には、まず市場の動向を踏まえ仮説を構築し、反論も視野に入れたデータ収集を心掛けたいです。過去の案件でガラス業界のリサーチを行い、代替素材への移行が売上に与える影響を数値で示した経験を活かし、今後はクライアントに対しても納得感のある提案ができるよう努めていきます。

「データ × ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right