クリティカルシンキング入門

思考の前提を見直し、課題解決力を強化

前提と過程を考える? 今まで、結論を出すことばかりに注力し、物事の前提や順序を立てて考えることを疎かにしていたことに気づきました。今後は、前提やプロセスの重要性を意識し、ビジネスだけでなく日常生活においても、その場しのぎの考え方を改め、しっかりと順序立てて考えることを心がけていきたいと思います。 解決策をどう見出す? クライアントの問題解決においては、目の前にある問題や思いつきの問題を取り上げてしまう傾向がありました。しかし、問題の前提を見極め、どのような解決策があるのか、改善後の状態はどうあるべきかを順序立てて考え、まとめ、結論を出すことが大切です。このプロセスが十分にできていなかったと反省しています。今後は、業務改善支援における問題の整理に反映していきます。 最適な施策は何? まずは、問題の前提を整理し、その前提ごとにどのような施策が考えられるかを順序立てて検討していくことから始めたいと思います。ただ「どうなったらよいか」だけに目を向けるのではなく、現在何が問題で何が不足しているのかを併せて考えていくことに注力します。前提や問題の洗い出しを丁寧に行うことから始めたいと思っています。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

マーケティング入門

偏りからの脱却:広がる学びの世界

マーケ視点は偏ってる? 6週間の学びを振り返る中で、自分のマーケティング視点が偏っていたことに気づきました。従来、単に「いいものを作ればよい」という考えにとらわれていた自分が、無意識のうちにそのような固定観念に陥っていたことを実感できました。また、グループワークで出会った仲間たちとの時間に改めて感謝の念を抱き、マーケティング思考の幅を広げる重要性を感じています。 情緒価値を考える? Q1に関連して、今後は機能的価値だけでなく、自社商品やサービスが提供する情緒的な価値についても、さまざまな視点から考えてみたいと思います。どのような直接的および間接的な価値を提供できるのか、また利用者がどのような感情を抱くのかを洗い出し、良い面や課題点を明確にして施策に反映させることが目標です。 課題解決の道は? さらに、課題解決に向けた施策を継続的に立案し、取り組んでいく状況にあります。まずは、Q2に記載した内容を実践しながら改善に努めたいと考えています。また、6月から新しいプロジェクトに参画する予定であるため、WEEK2~5までに学んだことを積極的に実践し、今後の成長につなげていきたいと思います。

クリティカルシンキング入門

大切な問いに出会う瞬間

イシューの意義は? 今、イシュー、すなわち今考えるべきあるいは答えを出すべき「問い」を特定することが重要です。イシューは、わかりやすい問いの形で提示され、具体的に問いかける必要があります。さらに、組織全体でイシューを共有することで、多様な視点から問題解決に取り組むことが可能となり、議論が本筋から逸れるのを防ぐ効果も期待できます。 医療現場の課題は? 医療の現場においては、組織の存在目的や経営改善、業務効率化、働き方改革、情報共有のあり方など、解決すべき問いが多数存在しています。まずは、解決すべきイシューの優先順位を決定し、それぞれのイシューに対して現状の情報を分解したうえで具体的な問いを提示することが求められます。これにより、根拠のある解決策の提案へとつながります。 会議進行はどう? また、会議の開催時には、あらかじめイシューを明確にし、必要な情報を共有してから議論を始めることが重要です。会議の進行においても、常にイシューを意識しながら進め、適切に問題解決へ導くことが求められます。具体的な問いを提示することで、実効性のあるより良い問題解決策へ結びつけることが期待されます。

データ・アナリティクス入門

仮説と試行錯誤で切り拓く未来

仮説構築はどう始める? 仮説を立てる際には、3Cや4Pといった切り口を活用し、情報を整理することで仮説ストーリーを構築しやすくなります。仮説は結論仮説と問題解決のための仮説に分かれ、検証にはデータ収集が不可欠です。その際、誰にどのように聞くかを工夫することで、仮説に沿ったデータが得られると感じました。 計画検討は何を確認? お客様の活用コミュニケーションの計画を検討する場合、これまでの施策結果の課題、どの部分で課題が生じているのか、その原因、そして施策変更による改善策について、段階的に細分化して考える必要があると認識しました。仮説の流れは「What → Where → Why → How」という順序で検討することで、論理的に整理されやすいと感じています。 検証実施はどう進む? 一方で、自分の組み立てた仮説が正しいかどうかについて、常に不安を感じることがあります。授業では、仮説に疑問があってもまずは早く検証を回すことが大切であると指導いただきました。しかし、実際にその検証を迅速に進めるためには、どのようなアプローチが最適なのか、今後も試行錯誤しながら検討していきたいと思います。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

仮説検証で切り拓く成功の道

問題整理のポイントは? データ分析を進める上で、What、Where、Why、Howという問題解決のステップを行き来しながら整理することが非常に大切だと感じました。こうしたステップを意識することで、問題を深く理解し、的確な改善策を導き出すことができると思います。今までプロセスを細分化して考えることを怠っていた分、今後はその重要性を再認識し、確実に実行していきたいと考えています。 テスト検証の極意は? 特に、A/Bテストにおいては、条件を揃えて1要素ずつ検証することが成功の鍵であると改めて実感しました。これまでステップを踏んで分析を進めることはできていたものの、動きながら仮説を試し、データを収集する視点が不足していたと感じます。今後は、常に仮説検証とデータ収集を並行して進める必要があると認識しています。 実施環境をどう見る? また、実際に業務でA/Bテストを実施する際、特定の店舗でのみ実施していたため、環境要因に対する配慮が不足していたと感じました。今後は、各店舗ごとの環境差を考慮した上で、より均等な条件でテストを行い、信頼性の高いデータを得られるよう努めたいと思います。

マーケティング入門

実践で見える!サービス革新の鍵

なぜ売れる理由は? 実際にある企業を例にとり、その商品の売れる理由を実践的に分析する機会がありました。この分析から、自社の強みについて改めて考えるきっかけとなりました。 どう顧客を捉える? また、顧客ニーズを深く理解するために、カスタマージャーニーやペインポイントに着目する手法を学べた点も大変有益でした。自社サービスにおける改善のヒントを得ることができたと感じています。 どこに改善の鍵は? 現在、サービスの課題解決に向け、アンケートやインタビューを実施する予定です。顧客のカスタマージャーニーを整理し、どこに改善ポイントがあるのかを明確にすることで、新たな解決策の発見に結びつけたいと考えています。 何が成功の秘訣? 具体的には、以下の取り組みを進める予定です。まず、アンケートやインタビューを通じて顧客ニーズを深掘りし、次にカスタマージャーニーを整理します。さらに、競合他社がどのように顧客と関わり、サービスの提供や改善に取り組んでいるかを調査し、その他、様々なサービスが売れている理由について、現地での観察や実際の体験を通して考察していくつもりです。

データ・アナリティクス入門

グラフで見る!実務改善の秘訣

平均値の違いは? 平均値の種類やその違いについて整理し、理解を深めることができました。とりわけ、これまであまり使用する機会がなかった幾何平均についても、成長率といったテーマが出た際に活用できるよう意識する必要性を感じました。 分布と標準偏差は? 分布や標準偏差に関しては、これまで取り組んだことがなかった内容でしたが、グラフ化することで実務上の問題解決に繋がるという新たな視点を得ることができました。実際に、標準偏差はグラフにすると直感的に理解しやすく、非常に有効であると感じました。 代表値の比較は? また、代表値の比較を行う際に、ばらつきを示すグラフと代表値を並べて示す手法を知りました。これは、口頭での説明を簡略化する工夫としても効果的であるとの印象を受けました。以前、自社商品のカテゴリーの成長率について問われた際、どのような指標を用いるか迷った経験があり、現在では幾何平均も一つの選択肢として考えられるようになりました。 実務利用の事例は? 今後、平均値や標準偏差が実務でどのように活用されているか、具体的な事例があれば知りたいと感じています。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

戦略思考入門

経済効果に隠された学びの真実

生産効率はどう評価? 「規模の経済性」を考える際には、単に生産量だけでなく、各プロセスの稼働率にも着目することが大切だと感じました。同様に「習熟効果」についても、製造業などでは自然な現象として捉えられている印象です。一方で、平準化と対比される点は意外な発見でした。しかし、昨今の人手不足の現状と、習熟する前にすぐ辞めてしまう現実を考えると、従来の「習熟効果」による改善が難しくなっているのではないかという危機感も抱きました。 多角化のリスクは? また、「範囲の不経済」という概念は非常に興味深く、安易な多角化がこの問題に陥る事例は意外と多いのではないかと思います。 経済性はどちらだ? 一方で、「習熟効果」については理解しやすく、納得感もありました。しかし、目指すビジネスモデルからは「規模の経済性」がかけ離れているため、既存顧客に対するサービスの提供バリエーションを拡大するという観点から「範囲の経済性」を考えるほうがイメージしやすいと感じました。 人件費はどう削減? さらに、人件費削減に関しては、外部調達や生成AIの活用が一つの解決策になり得ると考えています。

「改善 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right