データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

クリティカルシンキング入門

イシューを極める学びの旅

どのイシューに注目? 今回の学びで、フォーカスすべきイシューを正しく把握する重要性を再認識することができました。どのイシューに注力すべきか、そしてそのために何から取り組むべきかを明確にしなければ、成果に大きな差が生まれるという点は、今後の活動において大変参考になります。特に、ある有名ファーストフードチェーンの事例は、イシューの捉え方を考える上で非常に示唆に富んでいました。 エリアプランはどう整理? また、四半期、半期、年間のエリアプラン作成においても、この考え方は大いに役立つと感じています。エリアの現状や課題を正しく把握し、優先順位をつけること、さらには複数の解決策のオプションを検討することが重要です。顧客の反応を継続的に分析して、アクションプランを再構築し、必要に応じて追加検討を行う際にも、この学びは非常に活用できると考えています。 市場を多角的に見る? さらに、様々な角度から市場を分析することで、ターゲットとするイシューをより正確に把握する努力を続けたいと思います。仮説を立て、その検証結果をもとに改善を重ねるプロセスを通して、本当に必要な知識を身につけることが目標です。また、チーム内で得た知見を共有し、議論することで、さらに理解を深めることができると確信しています。

データ・アナリティクス入門

課題の核心に迫るMECE思考

原因を見極めるには? 問題の原因を分析する際には、まずプロセスごとに分解し、どこに問題が存在するのかをMECEの視点で明確に特定していく作業が重要だと学びました。このアプローチにより、原因分析なしにどのように解決策にたどり着くかが分からなくなる事態を回避できます。また、特定した原因が実際に問題の根本的な要因であるかどうかを検証するために、他の条件を極力同一に保った上で、原因がある場合とない場合の結果の違いを確認することが必要です。 なぜ原因を掘り下げる? 監査の現場において、課題を発見した際に「何が、どこで問題なのか」という点(WHAT・WHERE)だけを把握して満足してしまい、なぜその問題が生じたのか(WHY)まで掘り下げられず、結果として効果的な改善提案(HOW)がなされない場合があることを実感しました。今後は、プロセスに沿った課題の特定と原因分析により意識を集中させる必要があると感じています。 仮説検証をどう進める? 今後は、課題の特定及び原因分析の際に、MECEの視点をしっかりと意識し、問題の発生箇所と原因を的確に絞り込んでいきたいです。その際、立てた仮説を決め打ちにせず、データ分析を活用して客観的に検証することを心がけ、より精度の高い改善提案を実現していきたいと思います。

データ・アナリティクス入門

現実と夢のギャップを楽しむ学び

目的意識はどうする? 常に目的を意識することが大切です。ありたい姿を明確にし、現在地を把握した上で、そこからのギャップを見出すことが出発点となります。その差分に対して必要な課題を洗い出し、解消のための具体的な打ち手を決定し、実行計画を立てて自律的に取り組むプロセスは、学習や自己成長の場面でもシンプルに機能します。 アウトプットの考察は? また、様々なアウトプットに触れる際には、どのデータがどのような目的で、どのように加工されているのかを考えることが重要です。これにより、他者のアウトプットから自分なりの工夫やアイデアを吸収し、活かすことができます。 顧客提案をどう見る? 顧客提案の際には、次のシナリオ設定のフレームを基本として実施します。まず、目標や目的の目線を合わせ、現在地を確認し、目指すゴールを共有します。次に、課題を共有し、解決手法の提案とその効果検証方法を確定させ、具体的な打ち手を実施します。最後に、全体を振り返ることが、次への改善につながります。 自己評価は何が肝心? さらに、期ごとの自己の振り返りや査定評価資料の作成にも、同じフレームワークが生かせると考えられます。日々の努力の積み重ねが明るい評価へとつながることを意識し、着実に成果を上げることを目指しましょう。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

クリティカルシンキング入門

問題解決の道を切り開く分解術

問題解決の鍵は何か? 問題解決を行う際には、物事を分解することが重要です。分解する際は、まず全体を定義し、漏れや重複がないように意識することが求められます。 分解方法のバリエーション 分解の方法には、層別分解(例えば、「○○」と「○○以外」)、変数分解(「売上=単価×客数」)、プロセス分解(「入店前、入店後」など)といった切り口があります。もし分解の方向性に迷ったら、「いつ」「だれが」「どのように」といった視点から考えてみることが効果的です。 クライアント課題の深掘り法 また、クライアントの課題の根本原因を探る際には、MECEで分解を行い、特に重要なポイントを追求することが役立ちます。さらに、クライアントに提供している制作物を目標にさらに近づけるため、改善のポイントを洗い出すことも重要だと感じます。 データ加工へのチャレンジ 私はデータの加工が得意ではないため、仮説の幅を広げる練習をしているところです。3つの分解方法を利用して目の前の課題を分解してみても、選択肢がMECEに則っておらず、苦戦しています。しかし、一人で煮詰まってしまった時には、ChatGPTを活用しながら、反復練習を繰り返し続けています。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

デザイン思考入門

試行錯誤で見つける成長のヒント

なぜまずヒアリング? 企業向け研修を手がけた経験から、まず顧客が抱える問題や困難をしっかりとヒアリングすることが重要だと実感しました。その上で、プロトタイプの研修やワークを作成し、実際に体験してもらいながら具体的なアドバイスやフィードバックを得ることで、完成度を高められると思います。既存の研修においても、常に試作品と考え、実施の際に意見を取り入れていくことで、時代に合った育成施策を継続的に実施できるはずです。 現場の視点は大切? また、顧客の組織に入り込み、現場での観察やインタビューを通して、どのような課題が存在するのかを把握することが大切だと感じました。多くのプロトタイプを作成し、幅広いアイデアを出す過程で、発散と収束のプロセスが充分でないと感じる場面がありました。今後は、このプロセスをより徹底することで、より効果的な解決策を生み出すことが求められると考えています。 プロセス振り返りは? 一連のデザイン思考プロセスを自分の業務に適用してみると、どのプロセスが十分にできているか、またどの部分が改善の余地があるのかが明確になりました。今後は、アイデアの発散と収束のための時間と機会をさらに増やして、より質の高い取り組みができるよう努めていきたいと思います。

データ・アナリティクス入門

数値が導く成長の新戦略

現状を数字で見る? まず、あるべき姿と現状とのギャップを定量的な数値で示すことの重要性を再認識しました。問題解決ややりたいことに取り組む最初のステップとして、具体的な数字で現状を把握することは有効だと感じています。 バランスはどう掴む? また、ロジックツリーの活用についても実践を通してバランスを取ることが大切だと思いました。特に、あまりやりすぎず、適度な範囲で感覚を掴むことが求められると実感しています。 目的は明確か? 現在、支援中のプロジェクトでは、目的が曖昧なために要件が固まらないという問題があります。これは、現状とのギャップを定量的に示せていないことが一因と考えています。一方で、自身の仕事に「定量的に示す」を適用する際には、どの要素を数値化すべきかが課題となっている点も感じました。 目標との差はどう? 自分の戦略作成に関しても、会社から与えられた目標に対してどの程度のギャップがあるかを明確にする必要があると認識しています。そのため、現状の支援プロジェクトのなりたい姿、すなわち目的をより具体的かつ明確にすることが今後の課題です。戦略策定にあたっては、ロジックツリーを用いて、現状とのギャップに起因する問題点を洗い出し、改善策を検討していく予定です。

アカウンティング入門

B/Sから学ぶ、私のビジネス成長戦略

B/Sとは何か? B/Sが実際のビジネスに結びついていることの関連性を学ぶことができました。 例えば、ミノルのカフェについては高級志向のサービスを提供するために設備投資が必要であり、開業時に借入を行ったため、アキコのカフェに比べてB/Sの固定負債比率が大きくなります。一方、某航空会社においては、自社の航空機を用いてビジネスを行うため、固定資産の比率が某ファッションECに比べて大きくなります。 事業主の価値観を考察するには? このように、B/Sを見て現状を観察するだけでなく、それぞれの事業主のビジネスモデルや価値観を考察することができ、非常に興味深かったです。 また、自社のB/SやP/Lを改めて見直し、自社のリスク・安全性を確かめてみたいと思います。さらに、ビジネスプランの方向性と照らし合わせ、今後の改善点を再確認したいと考えています。 次期計画の資金調達をどう進める? 自社は9月決算であるため、次期の計画を考えながら資金調達のための金融機関への相談を進めたいと思います。場合によっては借入以外の調達手段も検討します。また、新規のビジネスプランも必要なので、自社の価値観や方向性の相違がないかを確認しつつ、計画を具体化し担当者と共に解決していきたいと思います。

クリティカルシンキング入門

思考を深める問いの力

問いの意義は何? 問いの形を用いる理由は、人間の特性として問いかけられることで頭が活発に働くためです。ただ情報を与えられるだけでは考えず、課題や疑問にも気づかないことがあります。そのため、自分の思考を整理する際には「問い」を優先して考えるべきです。特にメンバーに課題を意識してもらうために問いを立てることは効果的です。 メタ認知を鍛えるには? メタ認知を鍛えるのも重要です。これは主観を客観に変える力を持つことで達成できます。異なる業種や職種で離れた位置にいる人と深く意見交換をすることで、このメタ認知能力を向上させることができます。この能力は、上司や他部署の視点を取り入れ、多角的に物事を捉えるために活用できます。 業務改善の手法は? 具体的な業務改善の場面では、問いを立ててピラミッドストラクチャーを使用し、漏れがないかを確認します。改善が成功すれば、その問いが解決されたかを振り返ることも重要です。また、仮説を立て、それに対する上司や異なる意見を受け入れ、修正しながら想定を広げていくことが求められます。これは日常業務だけでなく、他の会社の方との深い意見交換の場でも活かせます。マネジメント手法や思考方法などについての議論を通じて、自分の視野を広げることができます。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

「改善 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right