クリティカルシンキング入門

イシュー設定が成功への鍵と実感した学び

イシューを具体化するには? イシューの設定が課題解決において重要であることが身をもって実感しました。特に、問いを明確かつ具体的に設定し、全体の前提や認識をそろえることが不可欠です。また、イシューを設定した後も、常にその意識を持ち続けることが大切です。議論や思考が途中でそれないようにするためです。 営業マネジメントにおける効果的なサイクル 営業マネジメントにおいては、数値達成や業績向上のために、適切なイシュー設定と、その解決策を検討・実施するサイクルが求められます。今回学んだ内容は、自チームのイシュー設定から数値改善まで、実践で試してみる価値があると感じました。 データ活用の力をどう身につけるか? 課題解決に際して何をイシューとするのか、これまでの数値データを活用して見極める力を習得したいと考えています。そのため、改めてデータを整理し、ピラミッド・ストラクチャーを使って、イシューの書き出しと整理を進めていきます。

データ・アナリティクス入門

ギャップを超える成長日記

無意識の決めつけは? 現在担当している業務では、欲しい回答を得るために無意識に決めつけをして分析や結果報告をしている可能性があると感じました。今後は、「モレなくダブリなく」の原則に基づいて、再度見直しを実施していきたいと考えています。また、問題解決は単にマイナス面を改善する対策だけでなく、あるべき姿とのギャップを明確にして、そのギャップを数値で示しながら埋めることが重要であると改めて実感しました。新サービスの社内展開においても、従来のアプローチでは行き詰まりを感じていたため、この考え方を取り入れて対応策を検討していこうと思います。 現状とのギャップは? 今後は、社内で提供しているサービスや新たに展開を進めるサービスに対して、まずあるべき姿を明確に定め、現状とのギャップを具体的に示します。その上で、ロジックツリーなどを活用し、問題をモレなくダブリなく分解することで、あるべき姿に向かって着実に対応策を進めていく所存です。

クリティカルシンキング入門

思考の偏りを超えて進む方法

適切な思考法を身につけるには? 何かを考える際には必ずバイアスがかかります。これを避けるために、適切な思考法を身につける必要があると実感しました。仕事の場面でも、自分の考えやその内容が網羅的で適切なのか、常に確認する必要があると感じています。クリティカルシンキングを学ぶことで、各タスクにおける抜け漏れを防ぎ、本質的な課題や論点について深く考えられるようになりたいです。 クライアント課題の本質に迫るには? 特にクライアントの課題を解決する際には、表面的な問題だけでなく、本質的な課題は何かという問いを常に考え、それを行動に移せるようになりたいと考えています。また、思考の偏りを避けるために、適切なロジカルシンキングの方法を身につけたいです。 仮説を改善し続けるために さらに、常に自身の仮説を改善するポイントがないかも考え続け、短絡的な思考に陥らず、網羅的にかつ本質的な問いを常に考えられるようにしたいと思います。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

クリティカルシンキング入門

3つの視点が導く本質探求

視点のバランスは合ってる? 「3つの視」を意識することで、これまで自分の視点、役職に基づく視座、そして所属部署の視野にとらわれていたことに気付きました。このままでは、問題の範囲や解決すべき課題の本質にたどり着けないと感じています。 利益率差の原因は? 現在の直面する課題は増収減益です。その一因として、売価設定や発注フローが個人に依存しており、同じ商品でも担当者によって利益率に差が生じる状況があります。各立場からこの問題の本質を捉え、改善へと結びつける取り組みが求められています。 ボトルネックはどこ? まず、会社全体のフローチャートを作成し、ボトルネックとなっている箇所を明らかにします。次に、各部署ごとにフローチャートを作成し、部署単位の課題を洗い出すことが重要です。さらに、「なぜ?」という問いを繰り返し、深く掘り下げることで、組織全体にまたがる問題の本質に迫ることができると確信しています。

デザイン思考入門

対話で広がるひらめきの瞬間

顧客視点で改善は? 自社サービスを顧客目線で改善するため、まずグループメンバーと顧客の体験を一緒に追体験しました。その中で、どのような改善が実現できるかをブレーンストーミングし、全員が活発にアイディアを出せるよう工夫しました。最終的にはKJ法を用いて、具体的なアイディアと検証ステップへと落とし込みました。 発想法はどう広がる? 一方で、発想法を一人で試みるのはなかなか難しいと感じました。だからこそ、同僚や家族など身近な人と対話することで、視野が広がることを実感しました。また、スキャンパー法やオズボーンのチェックリストなど、複数の観点から考える手法を取り入れると、発想の幅が広がり、さまざまなアイディアが生まれることが分かりました。発想は制約を設けすぎず、多様な観点や対話を通じて数を出すことが大切です。特に、既存の技術や考えを組み合わせることで、新たな解決策へとつながる可能性があると感じました。

リーダーシップ・キャリアビジョン入門

受講生が綴る成長ストーリー

改善余地はどこ? モチベーションを向上させるには、動機づけだけではなく、不満を解消したり、承認や自己成長を促すといった衛生要因も大切です。どこに改善の余地があるのかを把握するために、相手ができるだけ多く話せるよう共感を示し、話しやすい雰囲気を作る技術が必要です。 なぜこの手法は効果的? このアプローチは、成長途上の若手社員からアルバイトまで幅広い層に役立ちます。現在、私が担当している新入社員研修でも、各々に仕事を分解して与え、補助しながら完了報告を受ける手法を取り入れています。 伝える工夫は何? また、受講生から感じたことや、改善できる点、困りごとを丁寧に聞き出し、その都度対策をフィードバックするプロセスを繰り返しています。自らが実際に直面した問題とその解決方法を整理してストックし、新入社員にも伝えることで、育成にかかる時間を見越し、余裕をもって接しながら対話を重ねるよう心がけています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

データ・アナリティクス入門

シンプルな挑戦、未来への一歩

A/Bテストの魅力は? A/Bテストが注目される理由は、そのシンプルさにあります。限られた要素を2つ以上のパターンで比較することで、運用や判断がしやすくなります。また、テスト用の画像やテキストを用意するだけで低コスト、少ない工数で実施できるため、実験のハードルが低いのも魅力です。さらに、いきなり新しい案を採用する場合と異なり、段階的な改善によりリスクを最小限に抑えながら効果を測定できる点も大きなメリットです。 業務問題の解決策は? 日々の業務において発生する問題に対しては、「What」(問題の明確化)、「Where」(問題箇所の特定)、「Why」(原因の分析)、「How」(解決策の検討)というステップを意識し、効率的に対処しています。特に、問題の本質を捉えるために業務プロセスを細かく分解するアプローチを採用しており、複数の解決策を洗い出し、その根拠を基に最適な方法を選択するよう努めています。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

データ・アナリティクス入門

データが語る、私の成長ストーリー

現状はどう伝える? 私の目的は、日々KPIを達成できる体制を構築することにあります。そのため、どのように現状を正確に伝えるかが極めて重要であり、皆に心からの気づきを与え、具体的な行動を促すことで、この目的に近づけると考えています。 状況把握の秘訣は? 毎週、先週の状況を報告し、改善された点と引き続き課題である点を会議の場で共有しています。また、状況分析は、先々週との比較だけでなく、前年同時期との比較など、さまざまな視点を取り入れて工夫を重ねるよう努めています。 解決策の効果は? 課題に対する解決行動としては、実際に取り組んでいる組織へのインタビューを実施し、取り組みの効果を定量的に分析することで、対策を行った場合と行わなかった場合の効果の違いを明確にしています。加えて、どのようなデータの見せ方が皆の意識に響くのかを考え、情報の提示方法にも工夫を凝らしています。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

「改善 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right