デザイン思考入門

心と色で拓くビジネスの未来

色で感情は伝わる? まず、自己紹介の際に「今の気分は何色か」を色で表現するというお題に取り組むよう指示された点が印象に残りました。最初は意外に感じたものの、先生から「デザイン思考では物事をビジュアル化することが重要」と説明され、なるほどと納得しました。普段、仕事や私生活でさまざまな表現方法を用いているものの、色で気持ちを表すという発想はあまり意識していなかったため、新鮮に感じました。 デザインはなぜ重要? 次に、「ビジネスプランからデザインへ」というテーマの講義で、改めて気づかされることがありました。ビジネスを生み出す際、市場価値や競合状況、資金繰りなどの分析が重要視されると同時に、顧客そのものやその行動に注目し、顧客体験価値を最大化するアプローチが存在することを学びました。この考え方が、「初めから万人ウケするものは作れない」という現実を実感させ、デザイン思考の価値を感じさせるものでした。 新発想の壁は? 現在、私はSIerに勤め、新たなビジネスプランを考える立場にあります。IT業界では、AIを活用した取り組みが多く見受けられますが、既存サービスについては既に多くのアイディアが出されている状況です。そのため、従来のマーケット分析だけではなかなか新しい発想にたどり着くのが難しいと感じていました。 共感はどこで生まれる? そこで、今回学んだ「人間中心」や「顧客体験価値を最大化する」という視点で、まずは一般企業の従業員の中から特にどの部署・誰に焦点を当て、どれだけ共感できるかを試みることにしました。これまでは、ビジネスを考える際「モノ」ではなく「コト」に着目していましたが、具体的なイメージがつかみにくく、行き詰まりを感じていました。今後は、改めて「ヒト」を重視し、顧客の行動や体験に寄り添いながら、新しいビジネスの可能性を探っていきたいと思います。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

戦略思考入門

選択と集中で業務改革を実現!

心情と冷静な分析のトレードオフとは? 現実では、付き合いの長さや関係性、過去の経緯など多くの要素が絡み合い、心情的に優先度を決めていることがあると気づきました。冷静に分析することで、本当に優先度が高いかどうかを判断していく必要があると感じました。 なぜ取捨選択が重要なのか? 1. 捨てることが顧客の利便性を増す場合がある。 2. 昔からの惰性に流されず、常に新しい意見を取り入れることが重要です。トラブルや環境悪化が改善につながることもあります。 3. 餅は餅屋に任せるべきで、垂直統合のデメリットがメリットを上回ることがあります。思い切って専門家に任せる方が良いです。 新メンバーの意見をどう活かす? これらの選択を実践するうえで、3つの観点は当たり前だと考えがちですが、実行に移すのは難しいことがあります。新メンバーの指摘から多くの気づきを得ることができるため、経験豊富なメンバーだけでなく、新しいメンバーの意見を取り入れる機会を増やしたいと考えています。 業務分担と体制はどう見直す? 具体的な事例や惰性から抜け出す重要性についての気づきがよく表現されています。また、新メンバーの意見を積極的に取り入れる柔軟性も素晴らしいと感じます。思考のプロセスや場面をもう少し詳細に描くことで、更なる改善が期待できるでしょう。 正に今、次年度以降の業務分担や体制を整理しており、惰性で継続している業務がないか見直しています。新しいメンバーの意見は的確で、「選択」の考え方を実感しています。社員が担う業務と業務委託する範囲を明確にし、二重のコストや負担を避けるために整理を進めています。組織を統合し、スケールメリットを打ち出すために一時的に業務が複雑になっていますが、優先順位をつけ、継続すべき業務と見直すべき業務を分類していきたいと考えています。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

マーケティング入門

顧客に響く伝え方の秘訣

表現に工夫は必要? 売れるかどうかは、顧客の持つイメージに大きく左右されます。表現の仕方ひとつで、同じ商品でも伝わり方が大きく変わることを、実際の事例から学びました。また、ニーズが多様化している現代では、単に基本的な欲求を満たすだけでなく、どのような場面でどのような価値が提供されるかにも着目する必要があることを実感しました。 新商品の普及要因は? 新商品の普及には、以下の5つの要因が重要です。まず、従来の技術やアイデアと比較した際の優位性(比較優位)が挙げられます。次に、生活習慣の大きな変化を強いるものは採用されにくいという適合性、使い手にとってわかりやすく親しみやすいというわかりやすさが求められます。さらに、実験的に使用できる試用可能性や、新しいアイデアや技術が周囲に観察されやすい可視性も不可欠です。 顧客視点で何を伝える? 新たな商品やサービスを打ち出す際は、まず顧客が何を求めているのかを把握し、自社の提供する価値がどのように伝わるかを考えることが重要です。顧客のインサイトに深く触れ、その価値がしっかりと理解されるよう言葉を選ぶ重みを改めて感じさせられました。同時に、つい競合に目を奪われがちな中で、顧客視点を見失わないよう「差別化の罠」にも十分注意が必要です。 サイト表現の工夫は? 現在は、ウェブサイトのリニューアルにおいて、取り扱うサービスを短く簡潔に伝える方法を模索しています。イノベーションの普及要件として、比較優位やわかりやすさ、可視性に重点を置き、顧客のインサイトをしっかりと表現することに努めています。また、生活に密着したサービスを提供するページという特性上、ターゲット層の利用シーンや利用のきっかけ、どの言葉に反応するかといった具体的な情報を、関係者へのヒアリングを通じて収集する作業も進めています。

クリティカルシンキング入門

切り口を変える学びのヒント

どの分け方が効果的? データを分解する方法について、実際に手を動かしながら学ぶことができました。表からグラフを作成する際、従来は区切りのよい数字(例:5刻みや10刻み)で分類していましたが、特徴が際立つ分け方を検討することが大きな学びとなりました。 なぜ来場数が減少? また、博物館の来場数の減少原因を分析する中で、たとえ特徴的な傾向が見えても、その結果だけに安心せず「本当にそうなのか?」と別の切り口から検証することの大切さを実感しました。 どこでつまずいた? ①お問い合わせの原因分析では、顧客がどこでつまずいているかを考える際に、MECEで学んだ「プロセスで分ける」手法が活用できそうです。どの工程で問題が多いのかを明確にすることで、根拠に基づいた対応策を検討することが可能だと感じました。 要望整理で新発見? ②要望リストの整理に関しては、従来は顧客の要望が多い順に整理していましたが、顧客の属性や規模など、別の切り口でも考えることで新たな気づきが得られ、優先順位を決める際に役立つ情報が得られると感じました。 仕様調整はどう扱う? ③仕様調整については、システム上対応可能なものの、影響範囲が大きく判断が難しい課題を抱えています。来週のミーティングに向け、MECEの三つの切り口を活用して影響範囲を漏れなく洗い出す予定です。優先度の高いこの項目から着手し、ミーティングまでに発生する可能性のある事象を整理し、そのうえで課題として発生しそうな点も含めた資料を作成します。 1on1で何を伝える? また、①と②に関しては、1on1の場で上司に学びを伝える予定です。特に、①については、まず自分用のメモを作成し、顧客がどのプロセスにいるのかを把握してから対応策を検討する訓練を行います。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

マーケティング入門

顧客の心をつかむ体験価値の秘訣

付加価値はどう生まれる? Week.01からの流れを通して、「付加価値」を付けることの重要性がよく理解できました。単に表面的な内容ではなく、人の根源的な欲求に訴える付加価値を創造することで、より確固たる優位性が得られると感じました。つまり、顧客のニーズを的確に捉え、「何を売るか」を明確にすること、さらには、提供する価値を創造し、市場での強みとなる要素を磨いていく重要性を実感しました。 体験はどう見つける? また、「何を売るか?」「誰に売るか?」といった論理的な分析に加え、顧客が実際にどのような体験を求めているのか、カスタマージャーニーやエスノグラフィーなどを通じてその声を拾い続ける姿勢の大切さも学びました。商品やサービスの魅せ方が、その提供価値を左右することは言うまでもなく、細部にまでこだわり、最後の隅々まで追求することが求められます。 お客様の心はどう感じる? さらに、顧客の心の動きを考えることや、体験を設計する意義を改めて意識しました。たとえ、表面的な「勝ち負け」や「ワクワク感」だけでなく、実際に来店された際のお客様の気持ちや、その後の体験に注目することが、長く印象に残る価値を創り出すと実感しました。そうした体験価値を発見し、くすぐる方法を常に模索していく姿勢が、差別化に欠かせないと感じています。 学びはどのように整理する? 最後に、アウトプットに入る前に、自分自身で学びの要点を整理し、確認するルーティンの重要性にも気づかされました。時間や予算に追われる中でも、何となく流されるのではなく、学びをフレームワークにまとめるなどして、論理的かつ計画的に反映できる仕組みを作りたいと思いました。これからも、今回の学びを活かし、顧客が本当に価値を感じる体験の創出に努めていきたいと考えています。

デザイン思考入門

デザイン思考で見つける「新しい価値」

顧客中心のステップとは? 考え方のステップについて学びました。特に「顧客中心」というアイディアが印象に残っています。 まず、顧客の行動やニーズ、体験価値を表現し、それをデザインとして具体化します。その後、商品化までの過程で何度も試行錯誤を行い、検証と収束を繰り返します。このプロセスには、試作品の作成とその検証が含まれます。 デザイン思考の役割とは? デザイン思考とは、「潜在意識を表面化」させることを指します。万人向けにデザインされたものは衰退する時代になり、適切なターゲットを設定することが重要です。このターゲットを正確に捉えることが求められています。 私の職種である広報として、この考え方は「新しい価値」を見つけるための能力を養う補助となると思いました。顧客に徹底的に寄り添い、デザインに落とし込んで表現する反復行動を通じて、観察眼を鍛え潜在意識やニーズを引き出す力を培えると感じます。 調整力を高めるには? 業務全般においても、特に「調整」に活かせそうです。何が本当のイシューか再考し、適切な課題設定へのステップを導く基礎となります。このエッセンスを活用することで、組織のビジョンや全体のデザインにも役立てる可能性があります。 具体的には、広報のKPI設定について模索しています。この設定が組織のビジョンを最大化するための基盤であり、将来的には次年度の設定にもこの考え方を取り入れられるか試してみます。 日常にデザイン思考はどう活かせる? 最後に、業務における「顧客」をどこに置くかを整理し、何から考えるべきかを見直す訓練をしています。日常の些細な場面でも活用の余地があるか振り返ること、また、自分の潜在意識から何がデザインできるかを実験し、他者理解の一助となるよう努めています。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

デザイン思考入門

AIと語り合うアイデアワーク

生成AIで何を学んだ? 試作のグループワークを通じて、多くの受講生が高度な生成AIを活用している様子を目の当たりにし、私自身にとって大きな学びとなりました。アイディアを言語化したり、絵にすることに抵抗がなく、むしろ自らビジュアル化を楽しむ私にとって、このような生成AIの活用には改めて驚かされました。最新のテクノロジーを適切に用いることで、高いレベルのアウトプットが迅速に実現できるという点に、非常に刺激を受けました。 AIとデザイン思考はどう? 試作の過程で、生成AIが具体的なプロダクトデザインにおいて非常に得意であることが実感できました。一方で、デザイン思考を単なる思考法として用いる場合、抽象的なアイディアの整理や言語化において、AIがどこまで役立つのかという疑問も湧きました。企業の経営課題や公共サービス、交通、住居、教育、金融、軍事といった様々な領域でデザイン思考を応用することを考えたとき、AIをどのように効果的に活用すべきか、改めて考える機会となりました。グループワークの中で、他の受講生からは「AIでは生み出せない発想を引き出すためにAIと対話する」という意見も伺い、多様なアプローチが考えられることに大変興味を覚えました。 課題で得た自信は? デザイン思考入門の学習を通しては、毎回の課題回答や振り返りが、言語化のトレーニングとして非常に役立ったと感じます。業務での活用を意識し、各課題に対して即座にスピード感を持って回答することで、クライアントとのやりとりを想定した実践的なエクササイズにもなったと思います。これにより、自分の言語表現力が磨かれるとともに、生成AIの能力に対する素直な感動と共に、実際に試してみたいという気持ちが芽生えたのは、今回の学習の大きな成果といえるでしょう。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

「表 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right