データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

リーダーシップ・キャリアビジョン入門

変化を楽しむリーダーの軌跡

リーダーシップはどう? 現在の職場は比較的若いメンバーが多いため、日常の業務推進においてどのようにリーダーシップを発揮するかが課題となっています。これまで、指示型から支援型、参加型、達成指向型へと段階的にリードしていこうと試みてきましたが、各アプローチだけでは彼らのニーズを十分に補うことができないと感じています。そこで、どの仕事をどのメンバーに委ねるかを慎重に検討し、目標に対する道筋を明確に共有することで、メンバーが自発的に動ける環境づくりを期待しています。 マネジメントの課題は? また、将来的にマネジメントを担うメンバーに対しては、これまで動機づけに重きを置いた達成指向型だけでなく、抱えている不安に寄り添う支援型や一部指示型の手法も取り入れる必要があると考えています。どのリーダーシップの型にも固執せず、業務の内容や相手の状況をしっかりと把握した上で、ゴールに向かって導く姿勢を意識していきたいです。 実行ポイントは? 具体的には、以下の点を重視して取り組みます。 ① 任せる業務について、各メンバーが自立して遂行できるか、能力や経験が十分であるかなど、状態や状況を正確に見極める。 ② 目的を共有することで、メンバーの理解度や、業務達成に向けた具体的な道筋が描けているか、不安がないかを確認する。 ③ 理解度に応じて、業務の進め方(抽象的または具体的な指示の内容や確認のタイミング)を柔軟に調整し、結果として指示型、支援型、達成指向型のリーダーシップをバランスよく発揮する 成長環境は? 以上の取り組みにより、メンバーが持つ潜在能力を最大限に引き出し、自立して業務に取り組める環境作りを進めていきたいと考えています。

戦略思考入門

フレームワークで拓く新たな視点

背景はどう思う? 意見の背景にある事情を踏まえて考察することで、市場環境の変化、顧客要望、自社の課題など、3Cの骨格がより明確に見えてきました。これまで漠然と感じていたフレームワークが、意識して活用することで分析の解像度を高めることができたと感じています。 分析方法は何? 広い状況把握には、PEST、3C、SWOT、バリューチェーンといったフレームワークが非常に有効です。得意先の現状分析にはPESTを用い、相手が置かれている環境や抱える課題を正確に読み解くことが可能となります。また、自社は3Cを活用して市場環境や取引先のニーズ、競合との比較を行い、強みと弱みを把握してより的確な提案に繋げていく意向です。さらに、SWOT分析を通じて、表面的な強みに留まっていた自社の良さを改めて具体的に捉えることができるようになりました。 連携はどう取る? バリューチェーンについては、今回初めて学びました。これまで、所属部署内での状況把握に注力していたため、他部署との連携や大規模なプロジェクトに取り組む際には、バリューチェーンを活用して内部状況を正確に把握し、できることとできないことの判断、リソースの効率的活用、そして納期の正確な実現を目指したいと考えています。 活用はどう進む? 今後は、フレームワークを確実に記憶に定着させ、業務のあらゆる場面で即座に活用できる体制を整えようと思います。具体的には、学んだ内容を記載したメモを毎朝のリマインダーに設定し、日々使用するアプリにもフレームワークの内容を記録します。さらに、業務で利用する際にはチームメンバーと共有して共に考える時間を設け、実践での活用を深めていきたいと感じています。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

マーケティング入門

イノベーションを日常に活かす心得

イノベーション普及の要件とは? イノベーションの普及要件について学んだことは非常に有益でした。具体的には、次の5つの要件が重要です。まず、比較優位とは、新しいアイデアや技術が既存のものと比較して優れていることです。適合性については、生活に大きな変化を強いるものだと採用が難しいため、適合性を高めることが求められます。また、わかりやすさは、使い手にとって理解しやすく扱いやすいことが不可欠です。使用可能性は、実験的な利用が可能であることを示します。最後に可視性は、新しいアイデアや技術が周りから見て採用されやすい状態を指します。 顧客心理をどう理解する? 商品が売れるかどうかは、顧客のイメージによって大きく左右されます。そのため、顧客の声に耳を傾け、彼らの心理を理解することが重要です。差別化にこだわりすぎると罠に陥ることがあるため、売れない理由を常に考習する姿勢が求められます。 普及要件の活用法は? 顧客心理に訴えかけることを意識し、新しい取り組みや仕組みを社内で共有する際には、イノベーションの普及要件を強く意識していきたいと考えています。特に、相対的な優位性と適合性についてはこれまであまり考慮できていなかったので、今後はこれらを心掛けていきます。 日常での普及要件の習慣化 さらに、イノベーションの普及要件のフレームワークを日常的に意識し、習慣化したいと考えています。この視点を通じて、世の中の商品に改めて目を向け、様々な考察を行いながら知識を深めていきます。そして常に、相手の立場で物事を捉え、どのように魅せるかを他者の視点で意識していくことを心掛けます。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

アカウンティング入門

数字の裏側に隠された学び

売上と営業利益はどう? 売上高は企業の事業規模を示す指標であり、数字が大きいほど事業の規模が広いと理解できます。また、営業利益までの項目は本業における収益と費用を反映しており、本業でどれだけの利益を上げているかを把握できることがわかります。 経常利益はどう捉える? 経常利益は、主に財務活動に起因する本業外の収益や費用を含み、継続的な利益獲得の見込みを判断するための重要な指標となります。それ以降の項目では、税金等調整前当期純利益、当期純利益、親会社株主に帰属する当期純利益といった形で、最終的な利益状況が表現されています。 P/Lの見方は? P/Lを読み解く際には、まず売上高、営業利益、経常利益、当期純利益といった大きな数字に注目し、事業全体の概況を把握することが基本です。さらに、各項目の推移や数値の比較・対比を行うことで、傾向の変化や大きな相違点を見出すことが重要です。 競合との違いは? 現在のプロジェクトでは、競合他社と自社との比較・対比分析にP/Lを活用したいと考えています。特に、競合の過去数年にわたるPLの傾向を分析し、どの項目に費用をかけて利益を生み出しているかを抽出することで、自社との違いを明確にしたいと考えています。 効率はどう高める? また、5月末に予定している社内プロジェクトの中間報告会に向け、Q2の情報を盛り込んだ報告内容を準備中です。このため、分析は自分一人で進めるのではなく、ChatGPTやCopilotといったツールを活用し、業務効率を高めながら取り組む方法を模索しています。

「比較 × 変化」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right