データ・アナリティクス入門

代表値の落とし穴と細部の魅力

代表値の意外な落とし穴は? 代表値の有用性と、その落とし穴について理解が深まりました。データを活用する目的に応じ、代表値の背後にある背景を把握するためには、必要な手間を惜しまない姿勢が大切であると再認識しました。 毎月の数字はどう? また、毎月の売上や費用といった数字は、ひとまとめにすると他月と大きく変わらないように見えても、実際には中身が大きく異なることが多いです。このため、詳細な項目の変動にも着目し、単なる異常の有無だけでなく、次月以降への影響などを踏まえて、より深い検証に努める必要があると感じています。 内訳の分析は必要? さらに、月次決算の報告前の分析においては、全体の数字(代表値)だけでなく、必ず内訳の変動を比較することが重要です。単月の変動に留まるのか、次月以降も影響が及ぶ傾向があるのか、または対策が必要な内容なのかを、各要素ごとに分けて分析するよう心がけたいと思います。

クリティカルシンキング入門

伝わる資料作りのヒント

伝え方の工夫は? 言葉の選び方やグラフの作り方が、相手の理解度に大きな影響を与えることを学びました。グラフ作成の前には、まず「誰に何を伝えたいのか」を明確にし、その目的に応じたページ構成を設計することが重要だと感じています。 グラフで伝える秘訣は? グラフ作成時には、伝えたいメッセージをタイトルに配置し、そのタイトルに合わせてグラフの種類や位置、フォント、色を工夫して選定します。また、余計な装飾が入っていないかどうかをチェックすることも大切です。 資料作りの秘訣は? この学びは、業務においてデータ分析後に事実を伝えたり、示唆を示す際に有用です。具体的には、説明資料や実績報告の作成時に、目的を明確にした上で単なる集計に留まらず、自分なりの仮説を立てながらデータの切り口を検討しています。各ページで伝えたいメッセージとグラフのイメージを整理することで、ストーリー性のある資料作りに役立てています。

クリティカルシンキング入門

問題解決力で未来を創る!

どんな問いを立てる? 問題を明確に把握するためには、「問いは何か?」を起点にすることが重要です。問いを残し、それを意識し続け、組織全体で共有して方向性を統一することの重要性を学びました。また、データ分析では、データを加工し、数字を視覚化することで効果を高めることができると感じました。 論理枠組みはどう? 来年に向けた社内イベントや研修の企画書を作成する際には、今回学んだMECEやピラミッドストラクチャーを活用して、どこに問題があるかを特定し、論理的な枠組みを構築したいと考えています。これにより、主張を適切な根拠で支えられるようにしたいです。 根拠共有は十分? 来年度の社内イベント、特に新入社員プログラムの計画案を立てる際には、今年の結果を振り返りながら、アンケート結果を基に問題を特定し、プロジェクトチーム内でその情報を共有してしっかりと根拠づけを行っていくことを目指しています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

データ・アナリティクス入門

実践と洞察で未来を拓く

実践学習の効果は? 学習内容を実践的に活用しようとする姿勢が素晴らしく、データ分析においてもその洞察力が十分に発揮できると感じました。今後は、可能性や必要なデータをより具体的に整理していくことで、さらに充実した学びに繋がると思います。 市場環境の見直しは? また、現状の市場状況や競合環境を鑑み、製品サイクルを考慮した上で複数の課題を明確にすることが重要だと感じました。優先順位を明確にし、実現可能な対策を現場と共に検討・実行していく中で、どのようなチェックポイントが必要になるのかも考えていきたいと思います。 部内議論の方向性は? さらに、まずは部内で現在考えている課題を洗い出し、複数の案を出し合う場を設けると良いと感じました。その上で、今後の進め方についてマーケティングや営業の各方面とも相談しながら、各自の役割分担を実施して課題解決に向けた取り組みを進めていくことが望ましいと考えます。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

データ・アナリティクス入門

分析の裏側が開く未来への扉

なぜ生存者バイアスが起こるの? 思い返すと、分析に取り組む際に生存者バイアスの影響を受けていることがあったと感じています。既存の情報に頼るだけではなく、分析の目的や対象をしっかり整理することが、正確な分析と信頼できる情報提供につながると実感しました。 データの見方はどう? 現在の業務では、既存のデータをまとめて数字や報告資料にすることが主ですが、そのデータから得られる考察や予測も盛り込みたいと考えています。さらに、現状のデータだけに頼らず、より良い分析のために不足している情報や、精度を高めるためのデータ収集方法についても検討する必要があると思っています。 どう全体を俯瞰する? また、前月の稼働状況を報告する際、これまで前月と先々月の比較に終始していましたが、今後は全体を俯瞰する視点と詳細に注目する視点の両方を取り入れ、将来の予測や考察も盛り込んだ報告ができればと考えています。

データ・アナリティクス入門

見逃さない!MECEで切り拓く未来

MECEで何を学ぶ? MECEという言葉を知り、分析の際にデータを漏れなくダブりなく分類することがいかに大切かを学びました。これにより、見落としがちなチャンスをしっかりと捉える意識が芽生えました。また、問題や原因など、いくつかの段階に分けてロジックツリーを作成する手法にも注目しています。 ロジックツリーの力は? ロジックツリーは、売り上げの低下や利益の変動を分析する際に非常に有効だと感じています。現在の目標未達だけでなく、未来の理想像についてもツリー構造を用いて検討することで、より具体的な改善策を見つけられると考えています。 未来実現への道は? これからは、経理の視点から自分なりに詳細な分析を行い、ロジックツリーを作成する予定です。その成果を関係者と共有し、ブレーンストーミングを実施することで、望む未来を実現するための具体的な方法を模索し、周囲を巻き込んで進めていきたいと思います。

データ・アナリティクス入門

データ分析とプレゼンの質を上げるコツを学ぶ

分析における比較の重要性を学ぶ 分析とは比較であることを学びました。データを扱う際にはサンプリングバイアスに注意し、何と何を比較するか、そして目的に沿った分析を行うための問いが重要であると理解しました。すぐに飛びつかず、まず一呼吸おいてからデータを取り扱うことが大切です。 土地選定にはどんなデータが必要? 土地の選定に際しては、エリアや距離といった比較可能なデータを蓄積し、入居率や地代との関係を探ることが必要だと感じました。また、社内説明資料を作成する際には、データの表現方法としてグラフや図をどう表現するかを学んでいきたいです。 事業組成には説得力向上が必須 事業組成の中では、なぜその事業を行うべきか、比較軸を立てた上で理解しやすいデータやグラフを使用し、プレゼン資料の説明力を高めることが必要です。これにより、事業化の打率を向上させることで部署や関係各所に貢献できるでしょう。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

データ・アナリティクス入門

順路で解く成長の秘訣

段階分析はなぜ? 何か課題が発生した際、経験則だけで原因を探ろうとしがちですが、プロセスごとに段階的に分析することの大切さを学びました。「何が」「どこで」「なぜ」「どのように」という順番を意識することで、問題点を明確に把握できると実感しています。また、A/Bテストにおいては、条件を揃えることが重要である点も大いに勉強になりました。 なぜ集客難航? 現在、コンテンツの企画・販売に携わる中で、集客に関してかなりの困難を感じています。対象を広げるという対策を検討していますが、その前に、問題の所在と原因を絞り込む必要があると考えています。 新企画はどう進む? まもなく新たな企画・コンテンツ制作が始まるため、これまでの課題を整理し、具体的な提案につなげていきたいと思います。また、前回の販売時には十分なデータが取得できなかったことから、今後はデータ収集の方法についても検討していく方針です。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right