アカウンティング入門

カフェ経営で実感!P/Lの真実

カフェの価値をどう捉える? 今週は、あるカフェの業態や価値提供をテーマに、P/L(損益計算書)の構造を実感しながら学ぶことができました。各費用がどの勘定科目に分類されるのかを考える過程で、売上、原価、販管費、そして営業利益といった要素がどのようにつながっているのかを具体的に理解できました。また、単なるコスト削減が必ずしも利益向上に結びつかず、顧客が求める価値を損なう可能性もあるという重要な視点に気づくことができました。つまり、費用削減自体が目的ではなく、提供する価値を維持・向上させるための経営判断として捉えることの大切さを学びました。 数字で業務とどう繋げる? 私の業務はデジタルマーケティングとプラットフォーム運用が中心で、普段はROI、CVR、MAU、広告効果といったマーケティング指標を使って判断しています。このため、会計上の費用分類や損益構造と直接つながりにくい面がありましたが、固定費・変動費という視点で費用を整理し、投資効果を損益計算書の観点から捉える考え方は、今後の意思決定の精度向上に非常に有効だと感じました。今後は、ベンダー契約やプラットフォーム更新の際に、見積内容を費用構造の観点から分析し、財務部門と共通の言語で議論できるように努めたいと思います。完璧な会計スキルを追求するのではなく、数字で物事を考える習慣を身につけ、段階的にP/Lの視点を業務に取り入れていくことが、今回の学びの最も実践的な成果だと考えています。 他部署の事例はどう見る? また、経理や生産部門以外で、P/Lの数字分析を業務に活用している、またはこれから取り入れようとしている方がいらっしゃれば、どのような方法で実践されているのか、具体的な事例や工夫についてお話を伺えればと思います。

マーケティング入門

良い提案も魅せ方次第!成長のヒント

どうして売上が伸びない? キンレイが顧客の声に応えて冷凍うどんのアルミ容器を廃止したものの、売上は期待通りに伸びませんでした。しかし、お水が不要なうどんという新たな切り口で魅せることで、大幅な売上アップに成功しました。これは、同じ商品であっても、ニーズに合致したものであっても、いかに効果的に魅せるかによって顧客の反応が大きく変わることを示しています。 魅せ方の工夫は? 魅せ方を整理する上では、比較優位、適合性、わかりやすさ、可視性といった要件が参考になります。特に、比較優位やわかりやすさの観点からは、記憶に残るネーミングや効果的なキャッチコピーが重要だと感じました。また、新規性のある商品を市場に出すことは歓迎すべきことですが、その過程で競合が集まってくるため、常に顧客への訴求を忘れずに差別化に努める必要があります。普段、ネットショッピングなどで商品が売れていない理由を考えることも、マーケティング思考を養う上で大切です。 どう説得するの? 私はファイナンス部門に所属しており、社外では出資先から魅力的な投資元として認識され、共に成長していくことが求められています。一方、社内では上司や役員にリスクを伴う出資の理由を納得してもらう必要があります。今回の学びを通して、どんなに良い提案であっても、魅せ方が不十分であれば成果に結びつかないことを痛感しました。今後、自分の事例に適用できる具体的な視点についても、調べていきたいと思います。 効果的な訴求方法は? 実際のマーケティング現場や、上司や役員への説明の場面など、さまざまなシーンで人に訴求する機会があると思います。皆さんが日頃から工夫している魅せ方のコツやアドバイスがあれば、ぜひ共有していただきたいです。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

戦略思考入門

無駄を捨てる勇気で未来を切り開く

不要なものをどう捨てる? 不要なものを捨てることや、省くという考え方が、ワークを通じて理解できました。複数の顧客に対して優先順位をつける際、利益を見るだけでなく、ROI(投資対効果)を考慮することが重要です。無意識に懇意にしている顧客の優先度が高まり、対応が難しい顧客の優先度が低くなるといったバイアスがかかることを意識し、ROIの低い顧客を勇気を持って捨てる判断をすることが必要です。 効用最大化か方向性の明確化か? 利益の正確な計算が難しい場合も、一定の仮説を置いて思考を進めることで、複数のパターンで仮設思考を用いることができます。また、トレードオフの場面では、効用の最大化を図るか、要素を省いて方向性を明確化するか、その選択が誤らないよう注意が求められます。昔からの習慣に流されず、勇気を持って無駄や優先順位の低いものを捨てることで顧客の利便性を増し、自社が注力すべき業務に集中できるようになり、結果的にさまざまな貢献に繋がると感じました。 店舗分析で優先課題を抽出 自身が担当するエリアには5店舗がありますが、各店にはさまざまな課題があります。課題の大きさや緊急度、会社への寄与や貢献度を踏まえ、優先順位をつけて取り組む必要があります。これは今週のワークが活用できる場面です。店舗の売上の規模感と利益の構造を分析して優先課題を抽出し、利益とは切り離された問題については捨てる選択も必要になることが分かりました。 ROI向上への具体的な一歩は? まず、各店の売上の構造を見える化し、指標を同一化して分析します。そして、時間や人件費に対する利益率を確認し、効率化できる部分を明確化します。ROIの高い店舗から期限を設定し、課題改善を実践していきます。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

課題細分化で見つけた成功への道標

ロジックツリーで課題を細分化するには? ロジックツリーを活用して課題を細分化することは、ビジネスにおいて非常に役立つと感じました。大きな課題はどこから手を付けてよいかわからないものですが、細分化することで優先順位を付けやすくなり、各課題の重要性に応じて対応することが可能となります。また、漏れなくダブりなく分析することも非常に重要です。分析や解決策に漏れやダブりがあると、無駄な労力ややり残しが生じてしまいます。そのため、MECEの視点で課題解決の計画を立てたり、分析方法を考えることが不可欠だと認識しました。この手法を今後の業務で活用したいと思います。 計画立案の重要性とは? 過去に私が業務課題へ対応した際、初期段階で計画を立てずに場当たり的な解決策を進めた結果、効果が限定的となり、打った策が効果を上げていたかどうかも分析できなかった経験があります。この経験から、最初にしっかり計画を立て、関係者の合意を得た上で解決にあたった方が良いと感じました。今後は、今回学んだロジックツリーの考え方を活用し、業務課題の特定や優先順位付けを最初に行い、効率的に解決策を立案して実行したいと思います。 成長戦略にロジックツリーを活用する方法 私は現在、自社の売上をさらに伸ばし、業務の質を高めるための戦略を考え、実行する部門に所属しています。この業務を担うために、今回学んだ考え方が非常に役立ちます。具体的には、グループ全体の業績、店舗ごとの業績、そして社員個々の業績までを細分化して分析し、業績をさらに高めるための課題洗い出しや対応策の立案に、ロジックツリーの考え方やMECEの視点を取り入れたいと考えています。

クリティカルシンキング入門

他者の視点で捉える本質の学び

客観的視点は重要? 自分で作成したデータでは、どうしても見落としてしまう視点がありますが、他者が作ったデータを参照することで、欠落している点に気づきやすいと実感しました。これは、自分自身の思考枠に囚われがちであるためと感じ、課題設定の段階から客観的な視点を持つことの重要性を学びました。 本質を問いかける理由は? 具体的には、MECE(漏れなく・ダブりなく)を意識して要素を分解し、書き出して可視化する作業を通じて、思考の抜けや偏りを減らすことが有効であると理解しました。今後は「なぜその分析を行うのか」「何を明らかにしたいのか」という問いを繰り返し立てることで、本質的な課題に近づけるように意識していきたいと考えています。 実務でどう活かす? また、今週学んだ「本質的な課題を捉える問いの立て方」は、日常業務、特にデータ分析や支援活動の現場で活かせると感じました。例えば、売上や廃棄データの分析において、単に「なぜ数字が下がったのか」という疑問に留まらず、「本当に解決すべき課題は何か」「改善に直結する要因はどこか」といった問いを立てることで、より効果的な対策を導くことが可能となると考えています。 提案に説得力はある? 具体的な行動としては、データ分析業務でMECEを活用して要因を分解し、課題を構造的に捉えること、そして提案活動では、相手の立場に立って本質的な課題を整理し、想定される反論や疑問を洗い出してから議論に臨む姿勢を大切にしていきます。問いの立て方をしっかり意識することで、思考の抜けや思い込みを減らし、説得力のある分析と提案につなげていきたいと思います。

アカウンティング入門

カフェ経営で学ぶ価値と利益の秘密

カフェで価値守れてる? アカウンティング研修の第1週目では、P/L(損益計算書)を題材に、カフェ経営のケーススタディを通して「利益を生み出すためには、店としてどのような価値を提供するか」が重要であると学びました。特に、高級志向のカフェが原価低減を図るために安価な豆を使用しようとしたが、結果的に店のコンセプトが損なわれ、顧客に支持されなくなる可能性があるという事例が印象に残りました。単に売上から原価を引いた数値だけで判断するのではなく、「価値を守ることが利益に直結する」という視点の重要性を実感しました。 IT提案で本当に伝わる? この学びは、私が関わるITシステムの提案やプロジェクト企画にも活かせると感じています。たとえば、顧客に単にコスト削減を訴えるのではなく、その企業のビジョンや利用者のニーズに合致した価値を明示し、費用対効果の高い提案を行うことが大切です。そのため、今後は提案書の作成時に「この機能は誰のためで、どのような価値を提供するのか」を意識し、価格や納期だけでなく、価値提供を軸にした提案を心がけていきます。 価値、どう数量化する? 一方で、「価値を守ることが利益につながる」とはいえ、その“価値”をいかに定量的に測定するかについて疑問も感じました。ITプロジェクトでは、顧客の要求に応えるために機能の取捨選択が求められ、何を守るべき価値とするかの判断が難しいと感じています。他の受講生にも「価値」と「利益」のバランスについて、実際の経験をもとに意見を交換し、定量評価が難しい価値をどのようにマネジメントに反映するかを議論してみたいと考えています。

「売上 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right