データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

アカウンティング入門

実例で感じる事業計画の力

コンセプトは守れてる? 事業計画を立てる際は、しっかりとしたコンセプトの下で、資金をどこに投入するかを見極めることが重要です。借入は利息を含めた返済が求められるため、借入を避けるだけにこだわってコンセプトがぶれると、顧客の期待とのギャップが生じ、事業全体の価値が下がるリスクがあります。コア・バリューを守ることが、事業計画の成功に不可欠です。 利益配分はどう? 具体例として、売上が500万円、原価率が30%、固定費(人件費や家賃)が150万円の場合、営業利益は200万円となります。この利益を以下のように資金分配することが考えられます。まず、借入返済に50万円を充て、金利負担の軽減と財務健全性の向上を図ります。次に、ブランド価値の向上や将来の収益性アップを目指して70万円を再投資に回します。売上の変動に備え、30万円を内部留保し、あとはオーナー報酬・配当として50万円を還元します。 他の資金調達は? 全体的に、事業計画における明確なコンセプトと具体的な資金分配例がよく示されています。ただし、借入以外の資金調達方法についても検討することで、さらに理解を深めることができるでしょう。 資金と顧客はどう? また、資金繰りと顧客価値のバランスや、借入以外の資金調達の選択肢にも目を向けることが今後の課題といえます。事業計画を実行に移す際は、具体的なリスク管理プランにも注力すると良いでしょう。 資料を見直すべき? さらに、業務資料の見直しにおいては、顧客視点での分かりやすさが求められます。例えば、収益性(利益率や資金の回り方)を図表で示し、健全な経営が可能であることを説明する方法が効果的です。見直し案として、3期比較による損益構造の可視化、利益率のトレンド分析、資金の流れをタイムライン図で示すといった工夫が考えられます。また、資金分配シナリオの比較(保守型、成長型、高リスク型)や投資回収シミュレーションについても、表やグラフを用いて視覚的に示すことで、リスクと収益性のバランスがより明確になるでしょう。

データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

戦略思考入門

効率革命!ROIで賢く変わる現場

ROI重視の意義とは? 今回のケースを通じて、顧客アプローチの優先順位を決定する際、単に売上や利益額だけではなく、投資対効果(ROI)を重視する重要性を改めて学びました。特に、時間配分1%あたりの利益額という客観的な指標を利用することで、感覚に頼らず効率的な意思決定が可能になる点が非常に印象に残りました。ROIが低い顧客に対しては、勇気を持って切り捨てる判断を下すことが、戦略的な思考を促す大切な要素であると感じました。 標準化で何が変わる? また、業務の標準化がもたらすメリットについても学びました。たとえば、レシピや接客、清掃の手順を統一することで、どの店舗においても一貫したサービスと品質を実現し、顧客満足度を向上させることができます。さらに、仕込み・調理工程や在庫管理、新人教育の標準化により、作業効率が向上し、食品ロスや教育コストの削減にも寄与することが明確になりました。 リスク管理の要点は? 標準化は、HACCPに基づく衛生管理やクレーム対応、設備メンテナンスにも効果があり、食の安全性を確保しながらリスクマネジメントを強化する役割を果たします。その結果、非効率な業務を見極め、ROIの高い業務に注力するための客観的な判断材料として機能することがわかりました。これにより、企業全体の収益性向上にもつながると感じています。 品質維持の実践は? 具体的な行動としては、まず全店舗のレシピをデジタル化し、写真付きの標準調理手順書を作成することで、誰もが同じ品質の料理を提供できる体制を整えます。次に、接客マニュアルを動画コンテンツ化し、新人研修に取り入れることで、座学だけでなく実践的なスキルの習得を効率化します。衛生管理に関しては、清掃チェックリストと日報をアプリ化し、リアルタイムでの進捗確認と問題点の共有を実現するほか、主要食材の仕入れから提供までの温度管理基準を徹底し、抜き打ちのチェックを導入することで、食の安全性を確保する取り組みが重要だと学びました。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

データ・アナリティクス入門

ファネル分析で未病市場に挑む理由

数値分析の極意は? 数値分析では、プロセスごとに「率」にして検討することが有効です。A/Bテストは、同期間にランダムにユーザーを振り分け、その結果を比較する方法で、比較ポイントを絞ることが大切です。AIDAやAMTUL、AISASなど、プロセス設定に利用できるフレームワークは多様に存在します。また、ダブルファネルという概念もあります。これは、購買までのファネルと、購買後に他社に影響を与えるファネルが存在し、1人の顧客がその後の影響力で10にも100にもなる現代的な考え方です。 広告制約の壁は何? 私の業界では広告制約があり、顧客の声が届きにくいという問題があります。そのため、詳細な購買プロセスが追いにくく、単純なファネル分析は難しそうですが、未病分野の自費購入をターゲットとした市場には活用できる可能性があると考えています。営業部のプロセスにファネル分析を使用すれば、製品を少しでもよいと思ってもらえた後、どこがボトルネックになって採用決定に至らないのかを見極めることが可能です。AMTULが購買意思決定までのプロセスに最も近いと感じ、これを用いて考えています。採用までに多くのステークホルダーが関与し時間がかかるため、AIDAのような単純な興味や欲求だけでは購買に結びつかず、AMTULのように試用のプロセスが必須となるからです。 効果数値はどう変わる? プロセスとウォーターフォールチャートを掛け合わせた活用も試みています。プロセス段階に分けてグラフ化するのは初めてですが、採用後にカテゴリ別の売上内訳を見る際に使用します。ただし、プロセスが独自になりがちなため、段階設定には注意が必要です。さらに、ダブルファネルの考え方を応用し、購入施設からのエリア波及効果を数値で測る挑戦をしています。具体的には、1施設で売上が上がると、同医療圏内の売上や件数がどの程度上がるか、大施設の採用が小施設へどれほど影響を与えたかの数値化に取り組んでいます。

戦略思考入門

経済の視点で業務を進化させる方法

生産性の向上は? 生産性の向上と効率化を目指す中で、費用対効果や稼働対効果を意識することが売上と利益に直結するという認識を新たにしました。 規模経済はどう? 規模の経済について、コスト削減のために発注量を増やすだけではなく、需要と供給のバランスや物理的なリソースの確保など、総合的な影響を見極めた上での判断が重要です。 範囲経済を理解? 範囲の経済については、関連や類似の業務を統合またはカスタマイズすることで、ゼロからではなく既存の知見や資源を有効に活用して改善を図ることができるという点に注目しました。 経済の意味は? 「経済」という用語自体は馴染みがありませんでしたが、実際の事例を用いた説明により、その意味を改めて理解することができました。 論理構築のコツは? 総合演習を通じて、与えられた情報に安易に頼るのではなく、必要な情報を収集して自らの論理で結論を導き出すことが、仮説の精度を上げることに繋がると感じました。他者と意見の相違が生じた際には、その差分を明確にし、次のステップに活かすことが重要です。 業務効率を改善? 現在、BtoB向けの新規顧客獲得業務を担当しており、ターゲットによる組織内でのセミナーが重複しているため、効率的ではありません。今後、業務役割に基づく組織統合を進め、固定費やコミュニケーションコストの見直しを図ります。 一体化の道は? 総合演習を通じて、多面的な視点での論理構築と、自身の考え方をしっかり持つことを意識していきます。2025年3月までに、類似する業務を持つ組織との統合を調整し、分断されていた役割やコミュニケーションコストを改善し、一体化した業務運営を目指します。 将来の決断は? 次期中期計画では、●●の経済の考え方を認識しつつ、目先の改善に飛びつくことなく、潜在的な影響までを考慮した高い意思決定を目指していきたいと思います。

アカウンティング入門

数字が導く学びの冒険

売上原価の謎は? オリエンタルランドをモデルケースとして、B/SやP/Lの読み解きを学んだ内容は非常に興味深いものでした。キャストが売上原価に組み込まれており、その対応のすばらしさが売上に直結する事業であることから、研修など人材育成に多くの費用がかけられているという仮説を立てることができました。また、売上原価にロイヤルティが含まれている点については、ウォルトディズニー社との契約内容にも思いを馳せることになり、日曜日の振り返りの際に話題となりました。 現金留保の行方は? 震災後、流動資産としての現金留保に経営方針が変わったという点も印象的でしたが、実際にどのように現金を活用しているのか知りたくなりました。また、グループディスカッションでは、オフィシャルスポンサーへの経費負担という話が出た中で、先生からアトラクション施設工事費をスポンサーに負担してもらう新たなビジネスモデルについて学ぶことができました。 どの点が響いた? さらに、以下の2点が特に印象に残りました。まず、ちょうど4月の月次が発表されたタイミングで、B/SとP/Lがどのように連動しているのかを確認できたこと。次に、オリエンタルランドと同様に、保育業界でも現場の人件費が売上原価に組み込まれていて、その業界特有のP/LとB/Sの特徴がどのようなものかを探求したいという意欲が湧いたことです。 学びの効果は? 今回の学びを通して、財務三表が以前に比べて身近に感じられるようになりました。わずか6週間で大きな変化があったと実感し、グループディスカッションやグループワークに参加したことで、自分一人では考えつかなかった視点やアプローチに触れることができ、とても有意義な時間でした。仕事では味わえない満足感を得るとともに、学ぶ習慣が蘇り、今後も継続して知識を蓄積し、新たな引き出しを作りながら社会に少しでも貢献できればと感じています。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

「売上 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right