データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

戦略思考入門

無駄を捨てる勇気で未来を切り開く

不要なものをどう捨てる? 不要なものを捨てることや、省くという考え方が、ワークを通じて理解できました。複数の顧客に対して優先順位をつける際、利益を見るだけでなく、ROI(投資対効果)を考慮することが重要です。無意識に懇意にしている顧客の優先度が高まり、対応が難しい顧客の優先度が低くなるといったバイアスがかかることを意識し、ROIの低い顧客を勇気を持って捨てる判断をすることが必要です。 効用最大化か方向性の明確化か? 利益の正確な計算が難しい場合も、一定の仮説を置いて思考を進めることで、複数のパターンで仮設思考を用いることができます。また、トレードオフの場面では、効用の最大化を図るか、要素を省いて方向性を明確化するか、その選択が誤らないよう注意が求められます。昔からの習慣に流されず、勇気を持って無駄や優先順位の低いものを捨てることで顧客の利便性を増し、自社が注力すべき業務に集中できるようになり、結果的にさまざまな貢献に繋がると感じました。 店舗分析で優先課題を抽出 自身が担当するエリアには5店舗がありますが、各店にはさまざまな課題があります。課題の大きさや緊急度、会社への寄与や貢献度を踏まえ、優先順位をつけて取り組む必要があります。これは今週のワークが活用できる場面です。店舗の売上の規模感と利益の構造を分析して優先課題を抽出し、利益とは切り離された問題については捨てる選択も必要になることが分かりました。 ROI向上への具体的な一歩は? まず、各店の売上の構造を見える化し、指標を同一化して分析します。そして、時間や人件費に対する利益率を確認し、効率化できる部分を明確化します。ROIの高い店舗から期限を設定し、課題改善を実践していきます。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

課題細分化で見つけた成功への道標

ロジックツリーで課題を細分化するには? ロジックツリーを活用して課題を細分化することは、ビジネスにおいて非常に役立つと感じました。大きな課題はどこから手を付けてよいかわからないものですが、細分化することで優先順位を付けやすくなり、各課題の重要性に応じて対応することが可能となります。また、漏れなくダブりなく分析することも非常に重要です。分析や解決策に漏れやダブりがあると、無駄な労力ややり残しが生じてしまいます。そのため、MECEの視点で課題解決の計画を立てたり、分析方法を考えることが不可欠だと認識しました。この手法を今後の業務で活用したいと思います。 計画立案の重要性とは? 過去に私が業務課題へ対応した際、初期段階で計画を立てずに場当たり的な解決策を進めた結果、効果が限定的となり、打った策が効果を上げていたかどうかも分析できなかった経験があります。この経験から、最初にしっかり計画を立て、関係者の合意を得た上で解決にあたった方が良いと感じました。今後は、今回学んだロジックツリーの考え方を活用し、業務課題の特定や優先順位付けを最初に行い、効率的に解決策を立案して実行したいと思います。 成長戦略にロジックツリーを活用する方法 私は現在、自社の売上をさらに伸ばし、業務の質を高めるための戦略を考え、実行する部門に所属しています。この業務を担うために、今回学んだ考え方が非常に役立ちます。具体的には、グループ全体の業績、店舗ごとの業績、そして社員個々の業績までを細分化して分析し、業績をさらに高めるための課題洗い出しや対応策の立案に、ロジックツリーの考え方やMECEの視点を取り入れたいと考えています。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

アカウンティング入門

売上と付加価値の新発見!企業分析の視点

原価と売上の本質は? 売上総利益を付加価値と捉える視点は新鮮でした。今までは利益そのものが付加価値であると考えていましたが、実際には原価を抑えて高く売ることが価値なのだと理解しました。 利益の真意は何? 私たちはつい利益そのものに注目しがちですが、利益とは「原価、人件費、広告費などすべての費用を除いた残り」であることを認識しないと、儲けることがただ売上の成長に終始してしまう危険性があると感じました。そのため、事業計画を考える際には、収益構造をP/Lで簡単に捉え、売上と売上原価の関係や販管費と利益の割合を意識しながら効果的に検討していくことが重要です。 売上仕組みはどう見る? 売上の構造が付加価値が大きいのか小さいのかを客観的に見ることは、大変興味深いです。売上に対するコスト削減だけでも利益創出に貢献するので、資金を使う際には常に意識したいと思います。新規事業を検討する際には、どの部分に付加価値があり、どこで収益が見込まれるのかを具体的な金額と共に考える必要があります。 ブランドとP/Lの関係は? また、身近な企業のP/Lが自分の想像している企業ブランドイメージにどの程度一致しているのか確認してみたいと思いました。物価が上昇する昨今、各社がどのようにコスト削減に取り組んでいるのか、その削減がどの利益に影響を及ぼしているのかを確認することも興味深いです。さらに、新規事業において収益構造をある程度イメージできれば、夢物語にならずに実現可能性を説明できるようにしていきたいと考えています。逆に、そのイメージが描けない場合も、この視点が役立つでしょう。

戦略思考入門

営業から学ぶ効果的な組織改革の道

売上での判断は正しい? 営業を担当していたときには、クライアントの優先順位を売上だけで判断していました。しかし、リソースの使用状況や応諾率の可能性、利益額といった観点を考慮していなかったことに気付きました。 リソースは足りるか? 現在、私はエデュケーションチームのリーダーとして活動していますが、組織には大きな課題が存在しています。この課題に対して適切な対応策を打つためには、今のリソースだけで足りるのか、何を捨ててでも取り組むべきなのかを議論する必要がありました。そこで、売上インパクト、応諾率、効果、リソースの使用、実行可能性、利益額といった観点でタスクの見直しが重要だと感じています. 育成課題はどこ? 現在のミッションは営業人材育成に特化していますが、より広い視野で階層別に考えを発展させるべきです。業績向上のために必要な人材像が現状どうなっているのかを分析し、育成の課題を知識、テクニカルスキル、ポータブルスキル、マインド、スタンスのどの部分にあるのかを特定することが求められます。そして、不要なタスクを捨て、優先すべき点を明確にすることで、限られたリソースの中で最大の効果を出す方法を模索したいです. 理想組織の実現は? 経営戦略の実現に必要な組織像を定量的および定性的に確認し、理想の組織における管理職やメンバーのあるべき人材像も同様に評価します。現状の組織と人材の状況を、業績などの定量軸とES調査などの定性軸で確認します。理想と現状のギャップを整理し、課題に対する改善策を考える際には、やめるべきタスクと併せて施策を立案することが必要です.

アカウンティング入門

ターゲットを知ることで変わる未来

売上報告の数字は何を示す? ミノルとアキコのカフェはそれぞれ異なるターゲット層を想定しており、その特性を活かした戦略が売上に影響しています。売上報告書(PL)に表れる数字は、ただの数字以上の意味を持ちます。分析する際には、数字からどのような現象が起きているかを読み解く力が必要です。 どこにリソースを注力する? クライアントとのコンサルティング業務やデータ分析の提案では、ターゲット顧客のニーズを深く理解し、どこにリソースを集中させるべきかを考える力が重要になります。さらに、新しいサービスやプロジェクトを提案する際には、品質とコストのバランスを取ることの大切さを学びました。適切な投資を行うことで顧客満足度を高め、長期的な利益を追求する戦略を立てられるようになります。これらは、経営の意思決定やアドバイスを効果的に行う際にも役立ちます。 どこに価値を見出す? プロジェクトを始める際には、ターゲット顧客のニーズや好みを詳しく調査し、どこに価値を置くのかを明確にします。プロジェクトの初期段階で効果的な投資先を決定し、価値を最大化する要素に注力する計画を立てます。コスト面では、期待するリターンが高ければ単なるコスト削減ではなく、質を維持する選択も検討します。さらに、コスト分析とROI評価の機会を増やします。チームメンバー間でプロジェクトのコンセプトや提供価値を共有し、プロジェクト目標を一貫して実行できるようにします。クライアントや関係者に提案する際には、顧客体験を軸にした説得力のあるプレゼンテーションを作成し、付加価値を明確に示すことを心掛けます。

「売上 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right