データ・アナリティクス入門

データ分析で見つける新たな学びの価値

代表値の意義って? 代表値は、大量のデータを分析して大まかな実態を把握する際に重要です。特に、単純平均を用いるときには標準偏差も算出し、データのばらつきを確認することで、異常なデータを見つけることができます。グラフを比較・解釈し、仮説を立てることで、次の分析段階の方向性が明確になるのもポイントです。また、幾何平均は成長率や変化率の平均を求める際に用いることが適しています。 ターゲットをどう掴む? 競合や生活者ニーズを把握するため、製品購入者の年収や性別、年代、世帯人数を抽出します。そして、各製品のターゲットや、どのような生活者にどの製品が刺さるのかを理解するために、膨大な製品数から単純平均と標準偏差を用いて概要を捉えた後、詳細なデータ分析を行います。 販売戦略は何が鍵? さらに、注力ブランドの選定では、プロモーションや割引なしで販売好調な製品は、商品力が高いと考えられるため、これらを拡充したいと考えます。販売好調な製品の優先順位を決める際にも、幾何平均を基準の一つにすることが考えられます。 分析の流れは? 全体を把握するためには、まず代表値を算出し、その際にデータの散らばりを確認します。その後、詳細のデータを分析します。データ分析は「何を見たいのか」により比較対象が異なるため、この点を整理しつつ仮説を立てることが大切です。この流れを習慣化することが望ましいです。

データ・アナリティクス入門

データで切り拓く問題解決の未来

データで課題をどう切り分ける? 問題解決のプロセスやロジックツリー、MECE、あるべき姿と現実のギャップを定量的に把握するなどの知識は、実際に活用する際には難しさを感じました。特に、データの観点から課題を切り分ける作業はやや複雑でした。マーケティングや事業計画など多様な視点が浮かぶ中で、データに基づいて論理的に整理する必要性を実感しました。 深まったMECE理解の意味は? 総評として、問題解決プロセスやMECEの理解が深まったことは良い成果です。データの視点で課題を切り分ける挑戦には大きな可能性があります。今後経験を積み重ねることで、さらに力をつけていくことが期待されます。 日常業務にどう活かす? 学んだ知識を実務で活かすために、日常業務での意識的な取り入れが重要です。データ活用の支援においては、問題解決のプロセスを意識し、ロジックツリーを用いて問題の分解や特定を進めます。また、アンケートの相談が多いことから、その目的とKPIの確認を行い、MECEを意識した取り組みが必要です。 具体的なデータ活用法は? データ活用のサポートでは、問題解決のプロセスやロジックツリーを確認し、相手との認識を合わせ、問題点を明確にします。問題のあるべき姿と現実のギャップを定量的に示し、解決策の検討を行います。アンケート項目の確認においても、MECEを意識して進めていきます。

クリティカルシンキング入門

イシューで磨く本質の力

イシューの本質は? 「イシューとは何か、そしてイシューを設定して考えるとはどういうことか」を学びました。例えば、ファストフードチェーンの事例では、売上増という大きな目標に向かって進む前に、まず情報を細かく分解し、本当に解決すべき問い(イシュー)は何かを探るプロセスが大切だと説明されていました。売上増そのものがイシューではなく、目標達成の障壁となる要因や課題を見極めることが、本質であると理解しました。これにより、これまで「売上に対して何をやるべきか」という問いを立てていた自分の方法にブレがあったことに気付き、今後は目標への障壁となる具体的な課題に着目して情報を整理しようと考えています。 イベント数字は何示す? また、コラボイベントの売上やSNS運用のデータ集計から、次の施策へ向けた具体的なアクションを導き出す際にも、この視点が役立つと感じています。たとえば、3か月間実施したイベントの数字の推移を加工・整理し、目標売上に対して実績がどの程度であったか、また達成のためにはどのような条件が必要かを検討することで、課題(イシュー)を明確にする予定です。 イシューの適否は? さらに、目標と解決すべきイシューが混同しやすいため、ピラミッドストラクチャーを活用して「そのイシューは本当に適切か」を客観的に確認し、より的確な仮説にたどり着けるよう進めていきます。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

データ・アナリティクス入門

問題解決のステップでビジネス力向上!

問題解決のステップとは? 問題を解決する際には、ステップごとに考えることが重要です。やみくもに案を出すのではなく、状況確認や原因特定、解決策の検討といった観点に分けて洗い出すことが求められます。問題解決には二つの方向性があります。現状をあるべき姿に戻すことと、望む姿へのギャップを埋めることです。このギャップを定量化することが鍵となります。 プロモーション戦略にロジックツリーを活用 MECEに考える際の分解方法として層別分解と変数分解が使われ、ロジックツリーを用いて問題を分解すると優先すべき課題が明確になりやすくなります。これを、来年度のマーケティングプロモーション戦略を立てる際に活用しようと考えています。 施策の振り返りとギャップの活用法 まず今年度のプロモーション施策を振り返り、現状とあるべき姿のギャップを見て原因を考えます。そして、来期のありたい姿を考え、それに向けたギャップをどのようにアプローチするかを検討します。その際、分析にロジックツリーを活用する予定です。 チームで行う効果的な振り返り メンバーそれぞれに現状のデータと理想の姿のデータを出してもらい、そのギャップを見てチームで理由を検討します。振り返りを行ったうえで、有効だった施策、継続すべき施策、止める施策を検討し整理します。そして、会社の方向性に合わせて来期の施策を練り上げようと考えています。

クリティカルシンキング入門

本質を見抜くロジックの魔法

どうして課題分解が有効? 複雑な課題に直面した際、ロジックツリーなどのツールを活用して課題を細かく分解する方法を学びました。頭の中だけで考えると曖昧な課題に圧倒されがちですが、整理することで本当に解決すべき核心が明確になり、具体的な行動計画へと結びつけることができます。特に、関係者との議論において共通認識を持つためにも、この手法は非常に有効であると感じています。 本来の目的は何? また、業務を進める中で目の前のタスクに追われ、本来の目的や問いを見失ってしまうことがありました。定期的に問いを見直す習慣を身につけると、常に目的意識を高く保ち、無駄な作業を削減することが可能になると実感しました。 今後の取り組みは? 今後の取り組みとして、以下の点を意識していきたいと思います。 実行方法はどうする? まず、定期的な「イシュー確認会議」を導入します。チームでプロジェクトを進める際、週に一度など短い時間でも「私たちの本来の問いは何か」を確認する場を設け、常に問い続ける機会を作ります。次に、新しいタスクが開始された際には、まずロジックツリーを作成し、全体像と具体的な解決策を視覚化する習慣を定着させます。さらに、個人的な思考整理にも付箋を活用し、重要な問いや課題を常に目に見える状態に保つことで、日々の業務に流されることなく、本来の軸を見失わないよう努めます。

リーダーシップ・キャリアビジョン入門

不安解消!信頼で育む安心現場

信頼はどう生まれる? 上司と部下、リーダーとフォロワーの関係は役職そのものではなく、行動を通じた信頼関係によって成り立っています。他者から評価されるのは、個々の能力や意識ではなく具体的な行動のみです。信頼がなければ自然と従うことはなく、信頼を築くためには、互いの行動をしっかり認め合うことが大切です。 業務改善は何? 現在、私たちの業務は、従来必要とされていたことが十分に実施できていなかった業務に対して、どのように改善し実行するかを設計する段階にあります。先輩方ができていなかったという事実が、メンバーの「できない」という先入観を生み出してしまうため、まずはメンバーの不安な気持ちをしっかり聴き取り、その解消に努めることが求められます。メンバーが安心して行動に移せるような環境作りが重要です。 業務負荷の見直しは? また、各メンバーの業務負荷を確認し、個々が手を出すべき範囲を明確にすることも必要です。場合によっては、メンバーの上長と協議し、業務負荷の交渉を行うなど、適切なサポートを実施していきます。 兼務の調整策は? さらに、複数の業務を兼務しているメンバーに対しては、タスクの優先順位が低いと感じられがちな部分でも、モチベーションを維持・向上させるための工夫が求められます。これらの取り組みを通じて、チーム全体が安心して業務に専念できる環境づくりを目指していきます。

クリティカルシンキング入門

共感で切り拓く現場の課題解決

どう認識を合わせる? 課題は、見る人や見る角度によって変わるため、何を解決すべきかを正確に判断し、関係者全員がその認識を共有することが重要だと実感しました。また、時間が経つにつれて認識が薄れ、混乱が生じる可能性があるため、常に課題を再確認し、認識にズレが出ないよう努める必要があります。 導入の本質は? 私の業務は、新しい技術やソリューションを現場に導入することです。しかし、過去には「ソリューション導入」自体が目的化し、本来解決すべき課題や本質が曖昧になってしまったことが何度もありました。 問いの立て方は? 今回の問いの立て方は、これまでの経験を踏まえると非常に示唆に富むものでした。今後は、まず現場の課題を大局的に把握し、そこから各要素に分解していくアプローチで問いを設定していきたいと考えています。この方法により、本質的な課題解決につながると期待しています。 課題はどう可視化? まず、自分なりの現場での課題を、たとえ漠然としていても可視化します。その後、既存のフレームワークを活用して、課題を具体的な要素に分解していきます。 理解は届いてる? そして、その分解した内容を上司や同僚に提示し、課題の理解が共有できているかを確認します。理解が得られた段階で、適切なソリューションを検討し、具体的な実行内容を上司や同僚と協議して進めるようにしています。

クリティカルシンキング入門

イシューを見極めて効果的に対策を立てる方法

イシューを明確にするには? 物事を考える際には、まずイシューを明確にすることが何よりも重要であると学びました。イシューを明確にした上で、どのような取り組みを実施すれば良いかを具体的に考える必要があります。イシューを設定する際には、データを様々な切り口から分解してみると、課題がどこにあるかを見極めやすくなります。また、イシューは変化するため、その時々で明確なイシューを設定し、状況に応じた対策を講じることが重要です。 会議での論点確認が必要な理由は? イシューは設定した後も常に意識して確認しておかないと、論点からずれた話し合いになってしまうことがあります。会議が長引いたり、時間内に方向性が決まらないといった場面では、イシューがずれていないかを確認し、立ち戻ることを意識して実践していきたいと感じます。 提案に必要な論理的整理とは? 特に会議の際には、論点からずれた話し合いになっていないか常に確認し、ずれが生じた場合にはメンバーに指摘し、論点に戻ることを心がけたいと思います。また、新規サービスの提案を行う際には、これまではできそうなことややってみたいことから検討していたように思いますが、今後は組織にとっての現状の課題を明確にし、そのためには何をすべきか、その課題を解決したらどのような結果が得られるかを論理的に整理した上で、説得力のある提案を行いたいと考えています。

デザイン思考入門

デザイン思考と共感で創造力を育む

デザイン思考で効果的に話し合うには? 「新しいまな板をデザインする」というテーマの下で、グループと共に作業工程を話し合いました。私はデザイン思考のステップを把握しているつもりでしたが、一部が抜けてしまい、ディスカッション中に効果的な発言ができず、グループの意見をまとめることも困難でした。その後、先生の指導を受けてデザイン思考のプロセスを再確認し、協働と共感が重要である各ステップについて再学習しました。また、「万人向けのものは誰にも刺さらない」という言葉から、現在のパーソナライズ化の進展を学び、デザイン思考の重要性を改めて実感しました。 パーソナライズ化はどのように実現する? 私はヒューリスティック評価やユーザー調査を担当する際、課題を見つけることはできても、改善案を提案する際に万人向けのアイデアばかりが浮かんでいました。これを改善するために、「協働」と「共感」を意識しつつ、パーソナライズ化することを心がけ、万人向けに留まらない提案を目指したいと考えています。 ターゲット層を明確にする理由は? 過去にはヒューリスティック評価やユーザー調査を行う際に、「パーソナライズ化」を十分に意識していないことに気づきました。今後は、ターゲット層を明確にしたうえで、改善と提供するべき内容を考慮し、パーソナライズされたサービスの改善提案ができるよう、意識を変えていきたいと思います。

アカウンティング入門

経営理念とPLを連動させる実例学習の魅力

アキコのカフェで学んだこととは? アキコのカフェ事例を通して、PLを活用してビジネスモデルや経営理念を浮き彫りにする方法を学びました。理念を維持しながら利益を上げることが重要であり、アキコのカフェの場合、手軽さや日常感がコンセプトです。そのため、値上げではなく、仕入れの原価調整や多くのお客様に来店してもらうための施策、回転率の向上などの手段が必要です。 PLを面白く学ぶには? これまでPLは無味乾燥な数字の羅列に思えましたが、学習を通じて「難しくなくて」「面白くて」を実感できるようになりました。 自社分析で何を考慮する? 自社の分析においては、経営理念に沿ったお金の使い方をしているかを検討し、今後の資金使用にも活用できることを確認しました。業界的には属人化しやすい面がありますが、社員を大切にすることがPLにも反映されているかを見極め、それをさらに他社との差別化のために投資していきたいと考えています。 学習時間をどう確保する? まずは定期的な学習時間の確保が必要です。平日は業務に追われることが多いので、週末の朝に学習時間を設ける習慣を作ることが重要です。それができたら平日にも学習時間を拡大します。具体的には、PLの分析とインプットを行います。同業他社や近隣業種のPLの分析、さらに優秀とされる企業のPLを比較し、経験値を増やして苦手意識を払拭していきます。

データ・アナリティクス入門

手を動かす実践学習の軌跡

分析手法をどう感じる? 受講を通して、問題解決プロセスに沿いながら分析を進める手法が非常に印象的でした。目的や仮説の根拠となるデータの見せ方が多様で、読み手や主張によって使い分ける工夫が大切であると実感しました。また、比較を行う際に明確な軸を定めることで、より論理的な分析が可能になる点も学びました。 成果をどう評価する? 受講生の皆さんのアウトプットの質の高さも印象に残りました。各自が多角的に課題を分析し、仕事にどう反映させるかを常に意識している姿が刺激的でした。グラフの作成方法やデータ加工、プレゼンテーション資料の作成など、実際に手を動かしながら進める重要性を改めて認識することができました。学んだ内容を自分なりにアウトプットすることで、知識が確かなスキルへと結びつくと感じました。 業務改善のカギは? また、既存業務にデータ分析の機会が少ない中、自ら課題を見つけ改善していくためのプロセスを学んだことも大きな収穫です。まず、チーム内で起こり得る問題やその可能性を探り、起こっている原因を特定するために必要なデータを洗い出します。続いて、データの収集・加工を行い、仮定が正しいか、また改善のインパクトがあるかを確認しながら分析を繰り返す。このプロセスを上司やメンバーとレビューすることで、納得感のある提案へと昇華させる流れは、今後の業務改善に大いに役立つと感じています。

「確認」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right