アカウンティング入門

数字が語る採算改善の全貌

売上と費用の秘密は? この講座を通じて、売上を増やすか費用を下げるかという基本的な考え方や、会社全体の儲け(PL)の仕組みについて学びました。損益計算書では収益、費用、そして利益がどのように連動しているかが明確に示されており、企業活動における採算向上の重要性が伝わります。 全体をどう見る? また、営業担当としての視点にとどまらず、上位の立場から全体を俯瞰して判断する必要性も感じました。これにより、事業やプロジェクトごとの採算改善活動が、どのように全社の成績につながっているのかを具体的に理解することができると実感しています。 自社の指標は何? さらに、自社のPLを過去の数値と比較することで、これまでの取り組みや全社での活動がどの部分で成果を上げているのか、またどこを改善すべきかを客観的に評価できるようになった点も大きな学びでした。

データ・アナリティクス入門

実務革新!柔軟なA/Bテストの実践法

A/Bテストの本質は? A/Bテストの手法について、正しい理解を深めることができました。これまで実務で行っていた比較テストは、ある時点を基準に新旧を比較する単純な方法でしたが、今回の学びを通じてその限界と、より柔軟な視点で検証する必要性を実感しました。 課題把握の秘訣は? また、課題を正確に把握するための分析方法や、課題解決に向けたアクションを正しく評価するプロセスも学び、これらの施策を実務に組み込む意欲が湧きました。具体的には、自社製品やウェブサイトの外部メディアへの出稿にあたって、クリック率やCVRを用いた比較検証が効果的だと感じています。 メール配信はどう最適化? さらに、ウェブサイト会員へのメールマガジン配信の際にも、出稿内容やデザインによってA/Bテストを実施することで、より最適な方法を選択できる可能性を感じました。

データ・アナリティクス入門

新たな角度でデータを読み解く!

データ加工の本質は? データ加工の基本的な考え方について学び、特に異なる尺度でまとめたデータの数値だけでは判断ミスが生じることがある点に気づきました。単一のデータでも複数の角度から解釈する必要があり、どの尺度で考えるかが重要だと理解しました。 セグメント平均の真相は? 従来は接触者の年齢や地域などのセグメントごとの数値を単純平均で把握していましたが、中央値や加重平均、さらには標準偏差などの視点から見ると、これまでとは異なる発見があると感じています。これにより、データのばらつきや偏りをより正確に把握できると考えています。 再検討の必要性は? これまでのデータのまとめ方が実際の状況を正しく反映しているのか、改めて考えるために、単純平均だけでなく「中央値」「加重平均」「標準偏差」を取り入れた再検討に努めたいと思います。

データ・アナリティクス入門

表面を超えた先の学び

本当の原因はどこ? 問題発生時には、表面的な事象に惑わされず、その根本原因を追求することの大切さを実感しました。今回のケースでは、売上低下の原因が巡り巡って採用施策の強化に結びつくとは、当初は想像もしていませんでした。 部署間の連携はどう? 目の前で起こっている現象は、複数の事象のごく一部に過ぎないと理解しました。そのため、自部署内の要因だけに着目するのではなく、関連部署との連携にも注意を払い、視野を広く保ちながら検証する必要があると考えています。 全体像を見渡せていますか? まずは、全体像を俯瞰し、どこでどのように配置され、活動が行われているのかを把握することから始めました。その上で、ボトルネックとなっている部分に関連する事象を丁寧に確認し、検証を進めることで、有効な仮説を構築できると感じています。

戦略思考入門

学びが進化する生成AIの力

規模の経済本当? 規模の経済性については、なんとなく理解しているつもりでしたが、具体的にどの範囲で効果が発揮され、また逆に不経済となるケースがあるかを学び、改めて納得しました。 習熟の変化は? 習熟効果に関しては、これまで自分の業界で当然の現象と感じていました。しかし、生成AIの登場により「急激なイノベーションが習熟効果に大きな影響を与える」という事実を実感することができました。 ネットワーク理解は? また、ネットワークの経済性についても、仕組みを聞くことで再び理解を深めることができました。 業界はどう変わる? 業界によっては規模の経済性を十分に活かせない場合もあると感じますが、生成AIの影響下では習熟効果が劇的に変化しているため、今後はAIを活用した新たな習熟効果の模索に取り組んでいきたいと思います。

戦略思考入門

やらない選択がもたらす気づきの力

最終講義の気づきは? 最終講義への参加により、本講座で学んだ内容を全体的に振り返ることができました。受講生それぞれの関心に基づく着眼点を聞くことで、新たな発見や学びに繋がりました。私自身は「やらない事の選択」が印象に残りました。これは普段気づかない視点を意識させるものでしたが、業務への有用性を考えるとシナリオプランニングの重要性も再認識しました。 事業発展の進め方は? 事業発展の検討にあたっては、シナリオプランニングを実際に試しながら進めていきたいと思います。また、SWOT分析が日常生活でも役立つと感じることができ、私自身はダイエットを戦略的に進めるために現状分析と方針策定の手段として活用しました。何か新しい取り組みを始める際の共通理解の手段として、今回学んださまざまなツールを積極的に活用していきたいと考えています。

データ・アナリティクス入門

分析で見つけるビジネス成長の鍵

明確な分析目的を設定するには? 分析を行う目的を明確にし、必要なデータを適切に特定する重要性を再確認しました。指示する側とされる側の間で、作業前に前提条件にずれがないか確認する必要性も理解しました。このプロセスは、KPI設定や検証の際にも当てはまります。設定した目標が会社の方針と一致しているか、常に確認することが求められます。次回の対策を考えるためには、分析に必要なデータにズレがないかを検証し、そのデータが本当に有効かどうかを追求します。 ターゲットの再選定は必要? また、会社としてターゲットをどこに設定するかを再選定する必要があります。現在の顧客の業種別売上傾向やエリア別売上を詳細に分析し、各エリアの特性や注力すべき業種を見極めます。また、機会損失が発生している箇所を特定し、適切な対策を講じることが求められます。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

クリティカルシンキング入門

会話で広がる客観視点の世界

なぜ客観視が必要? 客観的に物事を捉えるためには、訓練が必要だと学びました。自分の思考のクセを理解するだけでなく、他者と恐れずディスカッションを行うことが、より客観的な視点を養う一助となるという新たな視点を得ることができました。一人で考える場合と比べ、会話を通じて自分の話し方や考え方の癖が見えてくるため、こうした対話の重要性を実感しました。 本当に今の方法? また、クリシンを確実に身につけるためには、まずは徹底して考え抜く習慣をつける必要があると感じました。仕事においては、直前の「やらなければならないこと」があると、つい過去の方法に頼ってしまいがちです。しかし、かつてと現状では状況が大きく異なることも多いため、本当にその方法で十分なのか、他に有効な解決策はないかと自問し続けることが大切だと考えています。

戦略思考入門

数字で紐解く組織改善のヒント

基本原則はどう理解? 演習を通じて、規模の経済や規模の不経済といった製造業の基本原則を改めて認識する良い機会となりました。非製造業であっても、固定費と変動費の区分を用いた損益分岐点の考え方を、組織全体にフィードバックすることが重要だと感じました。 コスト計測は正確? また、組織内の複数のビジネスにおける生産性や効率性を分析する際には、できるだけ現実的なコスト計測(固定費、変動費)を行い、経常利益段階での損益積算分析を実施する必要性を痛感しました。 改善活動に期待は? こうした分析結果を基に、組織メンバーが納得しやすく、課題を具体的に把握できる環境を整えることが理想です。その上で、改善活動を組織目標として共有するため、モチベーション向上策と連動した取り組みを進める必要があると考えています。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

「理解 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right