マーケティング入門

顧客の声に秘めた未来の鍵

本音の声をどう捉える? 顧客の表面的な声や要望だけでなく、その背景にある本当の気持ちを深く理解することが大切だと感じました。たとえ同じ商品であっても、名前や見た目の違いが売り上げに大きな影響を与えることがあるため、細部に気を配る必要があります。 戦略の見直しはどう? また、世の中は常に変化しているため、マーケティングの手法や戦略は常に見直すべきだと考えます。一度出した結論や対策であっても、時代の流れに合わせて再評価することが、新たな発見や改善につながるでしょう。ブログ記事のタイトルやWebアプリのデザインなど、具体的な点も定期的に見直していくことが重要です。 スキルの活かし方は? さらに、たとえ現状の職業がなくなったとしても、これまで培ってきたスキルや経験を個々に分解し、どの部分が今後活かせるかを確認することも重要です。データ分析の数字を見るだけでなく、SNSなどで寄せられる意見やメッセージに目を向けることで、人々が本当に求めているものをより深く想像することができると実感しました。

クリティカルシンキング入門

データ分析の新発見!MECEの秘密

データ分解の新しい視点は? データや物事を分割する際には、一度分解して終わりではありません。別の観点でも分解することで、新たな気づきを得ることができます。MECEの分け方には層別、変数別(因数分解)、プロセス別の三種類が代表的です。まずは大まかに分け、その後に細かく分解することが重要です。 効果的な伝達方法とは? 自分の考えを相手に伝える際には、ピラミッド・ストラクチャーを使って複数の観点で整理することが有効です。このとき、まず層別、変数別(因数分解)、プロセス別で瞬間的に整理できるようにトレーニングすることが重要です。細かい切り口でいきなり分けず、大まかに分けることから始めることが推奨されます。 自主演習でスキル向上を? さらに、ピラミッド・ストラクチャーの自主演習では、一つのパターンだけで終わらず、二つ以上の別解を出すように心がけます。瞬発的に切り口を見つける自主演習として、毎日通勤時に自分にお題を出し、層別、変数別(因数分解)、プロセス別で切り口を出す練習をすると効果的です。

データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

データ・アナリティクス入門

データ活用力を劇的に向上させる方法

平均値の限界を知る データを分析する際、すぐに平均値を出してしまいがちですが、平均値には外れ値に弱いという特性があることを学びました。また、代表値には様々な種類があることも知り、今後データ分析を行う際には適切な手法を選ぶ必要があると感じました。 精緻な分析を行うには? 収支分析では、単純平均を使用する場合と加重平均を使用する場合を考えることで、より精緻な分析が可能になります。こうした分析により、問題点の把握が促進され、より適切な打ち手を考えやすくなると思います。さらに、効果的なグラフを用いることで、分析結果を周囲に分かりやすく説明できるようになるでしょう。 グラフで何を伝える? 分析を行う際には、常に顧客ごと、業種ごと、各部門や担当者ごとに適切な代表値を用いることを意識します。この結果、売上高や利益、経費、所属人数などが異なる場合でも、より合理的な比較が可能となります。また、分析結果を視覚的に分かりやすいグラフにすることで、事業部としての素早い意思決定にもつながると考えています。

クリティカルシンキング入門

データ分析の偏りをどう排除するか考えた末に

思考の偏りをどう減らす? 普段から思考が偏らないように意識しているものの、自分のアウトプットには偏りが多いことに気づきました。その偏りを減らすために、複数人でのディスカッションは有用だと思いますが、一人の時でもそれを実践できるように努力を重ねていきたいです。 クリティカルシンキングの実践法は? 私は仕事の中で顧客のデータを扱うことが多く、そのデータを分析してインサイトを導出する際に思考の偏りが現れることがあります。ディスカッションを通じてその偏りをある程度排除できますが、会議の時間をより効率的に使うためにも、個人レベルでクリティカルシンキングを実践し、思考の偏りを排除することが重要だと感じました。 日常で能力を活用するには? 私は仕事の中での能力活用を目指しているため、普段の生活の中からクリティカルシンキングの練習をしたいと考えています。ニュースを見たりネット記事を読んだりする際に、一度取り入れた情報を反芻し、より幅広い視点で考え直すことで、それが達成できると思います。

戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

データ・アナリティクス入門

目的設定で切り拓く未来

分析ってどう進める? 分析とは、物事を要素ごとに分解して比較することだと考えています。データ分析のプロセスを学んだことで、物事の見方がクリアになり、目的を明確に意識した上で作業を進める大切さを実感しました。分析終了後にどのような状態を目指すのかを具体的に思い描いてから、データの収集や加工に取りかかることで、効率的により良い結論へたどり着きやすくなりました。 目的はどう変わる? また、既存の実績と計画の対比資料については、目的を見直すことで、その後の行動につながる資料に改善できると考えています。新たな課題に対しても、目的をしっかり意識することで、より適切な判断へと結びつけたいと思います。 目的共有で安心? 資料作成に入る前には、まず目的の設定と仮説の作成を十分に検討するため、「データ分析のプロセス」を印刷し、常に見える場所に貼っておくようにしています。自分が資料を作る際のみならず、他の人に作成を依頼する際にも、目的をしっかり共有する説明を心がけ、全体の質向上に努めています。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

業務効率化のカギはデータ分析と説得力!

日々の意思決定は? 業務で日常的に行っている意思決定も、「分析」の結果であるということに気づいた。また、より早く、より良い意思決定を行うためには、「データ」の性質を理解し、効果的な比較を行い、他者が納得しやすいようにグラフ等を使用する必要があることを学んだ。 なぜ運用を変えるのか? 業務効率化を進めるため、新しい運用を推進することが日常的にある。その際、従来のやり方を変えたくないメンバーも多いが、以下のプロセスを踏むことで業務効率化をスムーズに進められるようになると思う。 まず、なぜ運用を変更した方がいいのかをしっかり分析する。そして、反対メンバーが理解し納得しやすいように、グラフ等も活用しながら分析結果を提示する。 学んだ内容をどう活かす? まずはWEEK6までの学習の中で、「分析手法」「データの性質」「それぞれのグラフの特徴」をしっかり自分の身につける。そして、WEEK6までで学んだ内容をすぐに実践に取り入れ、上司やメンバーを巻き込み、業務効率化を達成していく。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

「データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right