データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

データ分析の新視点を見つけた瞬間

データ分析の重要性再確認 ライブ授業で教わった「データ分析は比較である」ということや、目的に沿った分析が重要だという点は、今までの経験から理解していたつもりでした。しかし、動画で出てきた愛の値段の計算や補強すべき部分の選択などの設問に答えることができなかったため、自分にはまだできていないことが多いと気づかされました。 比較視点をどう持つか? プロジェクトや業績の実績評価の際に、他の競合や他の例と比較して報告することができたら良いと思いました。「Apple to Apple」の比較対象を探すことは簡単ではありませんが、比較がないよりは評価や分析が深まるはずですので、挑戦したいと考えています。 比較癖をつけるための方法 結果や業績などの数字を見た際に、必ず他と比較する視点を身に付けることが重要です。何と比較して良かったのか、標準はどのくらいなのかを自分で確認するようにし、その比較対象があることでどのような見え方になるのかを考える癖を付けたいと思います。

データ・アナリティクス入門

データ分析で見えた学びの本質とは?

データ分析の目的は何か? これまでの学習を振り返り、データ分析において目的が重要であることを再認識しました。自分がどうありたいのか、そのためになぜデータ分析を学ぶのかをしっかりと言葉にすることが大切だと感じました。振り返りの中で、学習した内容を理解したつもりでも、言葉にできなかったり、理解が定着していないことがあると気付きました。 学んだことを実務にどう活かす? 講座全体を通じて学んだデータ分析のプロセスを、実際のお客さまアンケートや業務指標の分析に活用しています。サービス品質向上のために、問題点や原因を見つけ、それに対してどう対策するのかを具体的に見出していきます。 データ分析の具体的な手順は? まずは9月末までに、上半期の各種データの大きな傾向を洗い出し、仮説構築まで行います。その後、10月に入ったら上半期全体のデータを当てはめ、より詳細な分析を進めます。データのビジュアル化も必要なため、Tableauに新たなダッシュボードを作成します。

データ・アナリティクス入門

目的と仮説で切り拓く新世界

なぜ比較が大切? 今回の授業で改めて学んだのは、「分析は比較なり」という考え方と、目的や仮説を持って取り組む姿勢の重要性です。データ分析の根幹となるこの考え方は、今後の講義や業務の現場で常に意識して取り入れるべきだと感じました。 意見交換で何を得る? また、授業中にパソコンを購入する際の調査項目や、自身が望む条件について話し合った際、他の受講生の様々なアイデアが非常に参考になりました。この経験から、自分の考えに固執せず、複数の視点から意見交換を行うことのメリットを実感しました。 業務で分析のコツは? さらに、データ分析の考え方は業務においても広く応用できると考えています。例えば、ある業務プロセスにおいて不具合の解決を目的としてデータやプロセスを分析する際、目的や仮説を明確にすることが問題解決への近道になると感じています。 普段からデータ分析に携わっている方には、業務で分析を進める中で直面する課題や、その解決方法についてぜひお伺いしたいと思います。

データ・アナリティクス入門

日常の比較で見つける学びの光

比較は本当に必要? 分析に取り組む際、まずは比較が基本であるということを改めて実感しました。今回の学習を通じて、日常的に行っていることでも、再確認する必要があると感じました。 目的をどう捉える? また、データ分析を行う際には、その目的を明確にすることが不可欠です。何を明らかにしたいのか、どのようなデータを使い、どう加工して分析するのかを事前に整理することで、分析の精度が向上します。 結果をグラフで見せる? さらに、得られた結果をどのようにグラフで表現するかも非常に重要です。グラフは視覚的に情報を伝える強力なツールであり、分析結果を見やすく、分かりやすくするためには適切なデザインや構成が求められます。 業績をグラフで解説? 会計データを取り扱う中で、毎月の業績報告においても、的確な分析が会社の問題点や改善点を浮き彫りにすると考えます。分析結果を見やすくグラフ化することで、その内容を具体的かつ説得力のある形で提案できる点が大きなメリットです。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

クリティカルシンキング入門

多角分析で心ひらく瞬間

データ分析の視点は? データを分解して見ることで、見え方が全く異なることに気づきました。数値の動向が感じられるような分解軸を柔軟に設定することで、さまざまな視点から分析が可能になります。 仮説検証のポイントは? 1つの軸だけでなく、他の軸も検討しながら負荷をかけることで、導き出した仮説の正確性を検証し、その精度を高めるプロセスがとても重要だと感じました。 顧客分析の切り口は? 実際の顧客分析においても、年代などのパーソナルな情報や興味関心のデータをもとに、何かしらの施策が検討できる可能性があります。流入している顧客層だけでなく、購買している顧客層についても、これまで以上に複数の観点から分解して分析することが大切だと思っています。 最適化の方法は? 分解する軸をどのように最適化していくかは議論の余地があり、試行錯誤によってアタリをつけていくのが良いと考えています。皆さんはどのように感じられたか、ぜひ意見を聞かせていただけると幸いです。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

データ・アナリティクス入門

偏見を超えるデータの力

バイアスはどう捉える? データ分析を学ぶ中で、ただ数値を扱うのではなく、自己のバイアスを取り払い、タスクに合わせてニュートラルな視点に切り替える大切さを実感しました。このような状態で、高い専門性と比較するスキルを活かし、データから具体的な仮説を立証できると理解しています。 セキュリティは大丈夫? 社内で広くデータ分析を利活用するためには、堅牢なセキュリティ基盤とデータ基盤の構築が不可欠だと感じます。編集機能やデータ閲覧機能を適切に制御しながら、データウェアハウスを運用することで、業務に活かすための取組みが一層進むと考えています。 AI応用はどう進む? さらに、データアナリティクスを深く理解するために、4月から9月までの期間を通じて学習を進めるとともに、生成AIを取り入れたデータ分析への応用も視野に入れています。データウェアハウスから得られる結果や知見を、プログラムを通じて読み解くスキルの習得が、今後の発展に大いに寄与すると感じています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

データ・アナリティクス入門

グラフでひもとく学びの秘密

ビジュアル化はどう極める? データ分析において、ビジュアル化は非常に大きな価値を持つと実感しました。正しいビジュアル化を実現するためには、データの加工や適切なグラフの選定が鍵となります。特に、円グラフとヒストグラフのどちらを用いるかで迷うことが多いため、今後は意識を高めて判断していきたいと考えています。 提案資料の魅力は? 現時点では業務上頻繁に活用する機会はないかもしれませんが、将来的に提案資料を作成する際、ビジュアル化にこだわった資料作成を心がけることで、提案内容の有用性を直感的に伝えることができると感じています。 グラフ加工はどう学ぶ? また、今回の履修ではヒストグラフや円グラフなど、さまざまなグラフの種類を学び、大量のデータをどのように加工していくかについても学習しました。さらに、ビジュアル化した情報の伝え方についても工夫する必要性を再認識し、どの方向性で判断いただきたいかを明確にすることが重要であると理解しました。

「データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right