データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

データ・アナリティクス入門

比較の視点が開く学びの扉

データ比較の意味は? データ分析は本質的に比較であり、たとえばパソコン購入時に「購入目的」や「必要性」を問い直す姿勢には、根本から見直す意義を感じました。比較の材料が多岐にわたるため、広い視点で重要な要素を捉えることが、適切な比較―すなわち分析―につながると実感しています。 地域診断の見方は? また、今後「地域診断」を学生に教える際には、国、都道府県、市町村の各レベルでのデータ比較や近隣地域との比較が必要であることを強調したいと考えています。さらに、データの推移を見る際には、時代背景や社会情勢の変化、住民の価値観、教育水準、生活水準、文化、財政状況など多様な観点からの比較が不可欠です。 指導計画はどうなる? 来週から始まる学生の実習地での地域診断指導に向け、資料の見直し、指導スタッフとの方針の共有、記録用紙の修正を行う予定です。複数の実習施設に分かれて進められる実習では、各グループが進捗状況を発表することで、自分の実習地と他との比較が自然に行われ、異なる分析方法を学ぶ良い機会となると期待しています。

データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

データ・アナリティクス入門

多角的視点で広がる分析の世界

多角的な比較の意味は? 分析という作業は、さまざまな比較を通じて進めるものだと実感しました。異なる業界の方々と交流する中で、これまでにない視点やアプローチを知ることができ、データ分析における多様な考え方を学ぶ良い機会となりました。特に、GWでの話し方や取りまとめ方は大変参考になり、自分自身もその手法を取り入れたいと感じました。 成果分析の幅は? 具体的には、昨年の実績や計画との比較、さらには類似製品や過去のデータ比率といった複数の切り口での分析を行っていく予定です。これらの視点を用いて、毎週の実績を追いながら着実に分析の幅を広げていきたいと考えています。 導く結論のヒントは? ただし、現時点では分析からどのような結論を導き出せるかという点で、まだ十分な引き出しがないと感じています。この部分については、今後さらに知見を深め、充実させていきたいと思います。 他の手法はどう? また、他の受講生の皆さんが業務においてどのような比較手法を用い、データ分析を実施しているのかも非常に興味深く感じました。

データ・アナリティクス入門

数字が語る学びの秘密

データ比較の基本は? 他のデータと比較することが、意味を見出すうえで重要だと理解していましたが、件数が多いデータ同士の比較では、代表値を用いる必要があることや、データの分布状況を考慮する必要がある点まで深く意識したことはありませんでした。今回の学習で、データをビジュアル化して各々の特性を目で確認することで、仮説が立てやすくなる一連の流れが理解でき、非常に勉強になりました。 数値の習得方法は? ただ、加重平均や幾何平均、中央値、標準偏差といった細かな数値の算出については、繰り返し実践しながら学んでいかないと身につかないと感じました。そのため、何度も反復して練習する必要性を痛感しました。 資料作成にどう活かす? 今後、資料作成の際に付録データを掲載する場合は、今回学んだデータのビジュアル化を活かし、読み手に伝わるようなデータ表現を工夫してみたいと思います。また、データ分析の際には、どのような状況でどの代表値が適切かを踏まえ、代表値と散らばりを考慮して数字を集約していくことを意識したいと考えています。

データ・アナリティクス入門

問いから始まるデータ探求

仮説はどう作成? データ分析において、まず仮説(問い)をどのように作成するかが重要であると再認識しました。解説で提示された「地元のネットワークを構築できなかったから」という視点は、私にとって新たな発見でした。また、仮説自体の数が少なかったことから、問いを思いつくためのトレーニングが必要だと感じました。 中央値の適用は? 代表値、特に中央値の用い方についても多くを学びました。アンケート分析などにおいて、平均値が低いという理由だけで意図的に中央値を用いるのは適切ではないという指摘は、慎重な判断が求められると実感させられました。 平均値は信用できる? 報道などで目にする数字の平均値だけに頼るのではなく、しっかりと問いを立て、調査することの大切さを改めて考えさせられました。 最適なグラフは? また、伝えたい内容や主張に合わせて最適なグラフを選定する方法を検討し、Excelなどで実際に作成してみることが有効だと感じました。問いを立て、その根拠となるデータを調べ考察する訓練の重要性も実感しました。

データ・アナリティクス入門

平均に惑わされない分析術

平均値では捉えきれない? データ分析の学びを通じて、平均値だけでは捉えきれない情報があることや、平均値そのものにもさまざまな種類が存在するという新たな視点を得ました。また、データの散らばりを正しく理解する必要性や、単調な棒グラフや円グラフ以外のビジュアル化手法にもそれぞれのメリットがある点を、具体的に理解することができました。 どの指標を選ぶ? これまでの分析では平均値に頼りがちでしたが、目的に応じて加重平均や幾何平均、あるいは中央値といった他の指標も活用すべきだと強く感じました。今後は、分析の目的に沿って適切な手法を使い分け、より的確なデータ解析を目指していきたいと思います。 SNS分析で何が見える? さらに、SNS系のコンテンツについては、年齢層や性別ごとのリアクションの違い、これまでのフォロワー増加率から今後の成長をどのように予測できるのかといった点について、より詳細な分析が求められると実感しました。今後は、こうした視点も取り入れて、より充実したデータ分析に努めていきたいと考えています。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

クリティカルシンキング入門

分解で発見!学びのチャレンジ

分解の意義は? 「分けていく」ことは、理解を深めるための重要な手段です。たとえば、数字を活用する際には、まず全体を定義し、目的に沿った切り口で分解することが求められます。このプロセスは、結果がすぐに見えてこなくても、どこに傾向があるかを把握する手助けとなります。 迷いはどう克服? 分解する作業に迷いが生じた場合も、早急に結論へたどり着くために、思い切って分解を実施してみることが大切です。時間をかけて検討するより、まずは行動してみることで、意外な発見に繋がることもあります。 課題の本質は? 顧客実績のデータ分析においては、これまで曖昧な課題から無理やり示唆を引き出してしまうことがありました。そのため、問題提起の初めに目的を明確にし、「問題箇所」の特定、「原因究明」、そして「解決策」の各ステップを順序立てて検討する姿勢が必要です。 相談で解決する? また、業務に関しては、同僚や部下との相談を積極的に行い、情報の整理や意見交換を通じて、より良い解決策につなげることが望まれます。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。
AIコーチング導線バナー

「データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right