データ・アナリティクス入門

仮説×検証で広がる未来

仮説と検証はどう? 問題解決の4つのステップの一環である原因の分析について、まず、原因を突き止めるためには仮説を立て、その仮説を実際に検証する必要があります。この検証のために必要なデータを収集し、フレームワークなどを用いて多角的な切り口からデータを引き出すことが大切です。また、解決策の一つとして、WEB上での施策検証に適したA/Bテストが有効です。 データ設計の秘訣は? さらに、現在の課題に必要なデータをどのように設計するかという視点を持つことも重要です。たとえば、共に仕事をするメンバーや経営層に対して、データに基づく裏付けがきちんと説明できるようにすることや、判断を求められた際に感覚的な決断ではなく、しっかりと分析した上で判断できるかどうかを見極める力が求められます。 経験共有の意義は? 皆さんには、業務上で判断に困ったとき、どのようなデータ分析を行って助かったか、あるいは失敗した経験について共有していただきたいと思います。また、最後の最後には勢いも必要ですが、どの程度の分析を行えば十分なのか、自分自身が満足するまで分析すべきか、あるいはどのような基準を持つべきかについて、みなさんと議論してみたいと考えています。

データ・アナリティクス入門

理想に迫る戦略思考の実践術

講義で何を感じた? 今回の講義では、ビジネススクールの事例を通して、生徒数の確保にばかり注目してしまう傾向について考える機会を得ました。しかし、まずはありたい姿を明確にし、その実現に必要な課題を洗い出すことが重要だと実感しました。このプロセスにおいて、ロジックツリーを用いて視覚的に整理する手法は非常に有効であると感じ、今後は必ず活用していきたいと思います。 戦略のギャップはどこ? 次に、本社戦略としてのあり方と、各営業拠点での実践にギャップがないかを確認することに着目しました。両者に乖離がある場合、現状のエリアで不足している点や遅れている点が明確になると考えています。ありたい姿から導かれる課題が適切かどうかを再確認するために、担当者とディスカッションを重ね、戦略の見直しを行うことも重要なプロセスです。この中で、MECEの原則を実践できているかどうかもひとつの検証ポイントとなりました。 MECEの活用はどう? 一方で、MECEの思考法を一人で完全に使いこなすためには、経験を積むことが不可欠だと感じます。常に漏れがないように努めてはいるものの、やはり抜け落ちが生じてしまうと実感しており、今後の課題として捉えています。

データ・アナリティクス入門

仮説から未来を拓く学び

なぜ仮説は大切? 「良い仮説」という言葉が非常に印象に残りました。これまで、問題が発生した際には、過去の経験や思い込みに基づいた一方的な判断に頼っていた部分があったと感じています。今後は、問題に対して複数の仮説を立て、それぞれを検証していくことが大切であると考えています。 売上課題の原因は? 私の担当している製品販売では、代理店を通じた受注や売上に関する問題が頻繁に生じます。こうした課題に対しては、さまざまな仮説を立て、検証を進めることで問題解決を図る必要があります。特に、施策と受注売上の関係性を十分に考慮して対応することが重要だと思います。 セミナーの現状は? まずは、施策に関する問題点を整理することから始めます。長年、定期的にセミナーなどを実施してきましたが、必ずしも思うような成果に結びついていない現状があります。今後は、まず顧客のニーズを正確に把握し、現行のセミナー内容が実際に顧客の要望に合致しているのか、改めて検証する必要があると考えます。 3C分析で状況は? そして、まずは3C分析を通じて状況を明確に把握した上で、複数の仮説を立て、順次検証を行っていくことで、今後の改善策を模索していきたいと思います。

デザイン思考入門

小さな失敗が大きな変革に

どうしてデザイン思考? ライブ授業の録画を視聴して感じたのは、従来のロジカルシンキングだけでは達成し得なかったイノベーションを、デザイン思考で実現できるのではないかという期待です。特に、ユーザーが抱える潜在的な課題を見える化することで、本質的な課題が明確になるという点に大きな意義を感じました。 どうして顧客不在? また、結果を出せない組織には「顧客(ユーザー)不在」という共通点があると感じています。私の職場では、新しい企画を提案すると「予算は?」「担当は誰が?」、「上層部が賛同しない」といった否定的な意見が次々と出され、そのために改革が進んでいない現状です。厳しい状況下で経営層を巻き込むのは難しいですが、自らの業務の中で「ユーザーは誰か」「どのような喜びを提供できるか」「どんな困りごとがあるのか」を常に意識することが、デザイン思考を活かす第一歩だと考えています。 プロトタイプの効果は? 当面は、自分の担当業務の範囲内でデザイン思考のプロセスを実践していこうと思います。特に、プロトタイプを用いた検証プロセスは、試行錯誤を通じて小さな失敗から学ぶ大きな醍醐味だと感じており、これを繰り返すことで改善を図っていく所存です。

データ・アナリティクス入門

論理とフレームワークで拓く未来

フレームワーク活用は? 課題に対して仮説を立てる際、4Pや3Cなどのフレームワークを活用することで、これまでの漠然としたアプローチから、より効率的かつ効果的な方法へと進化できることを実感しました。従来の方法と比べ、論理的に整理された仮説構築が可能になり、今後の取り組みに大きな期待を持っています。 客観データで見直す? また、仮説思考においては、反論を排除せずに客観的なデータ収集を行い、都合の良い解釈にとらわれないことが重要だと学びました。仮説が間違っている可能性を認め、検証に基づいた見直しを行う姿勢が、正確な結論に繋がると感じています。 問題解決の切り口は? 今後は、問題解決に向けて複数の仮説を立てる際、フレームワークを活用しながら様々な切り口で検討していきたいと思います。これまで何となく仮説を立てていた点を改め、より具体的かつ体系的なアプローチを心掛けるつもりです。 進行中の分析は? 現在進行中のデータ分析に関しても、今回の学びを活かし、もう一度仮説を立て直して検証を行います。日々の業務において常に仮説と検証のプロセスを意識し、フレームワークの活用に習熟することで、より確かな成果を目指していきます。

データ・アナリティクス入門

分解で納得!問題解決の実践

課題の本質を探る? 問題解決には明確な手順が必要です。まず、直面した課題を正確に言語化し、現状とのギャップを明らかにすることが求められます。そのため、分析を始める前に、課題とギャップの埋め方についてしっかりとすり合わせ、合意を得ることが重要となります。 合意のポイントは? 合意を形成するためには、問題を漏れなくダブりなく分解し、論理的かつ視覚的に納得感が得られる形で提示する必要があります。たとえば、「劇場の売上の減少」という課題認識のもと、大枠では単価と客数に分解できますが、そこからさらにMECEな形で掘り下げ、時系列比較の中で最も影響が大きい部分を特定することが効果的です。 収束はどう図る? また、予実比較の検証のように議論が発散しやすい場合でも、一定の手順に従えば納得感のあるロジックで改善箇所に合意が得やすくなります。具体的には、直近1年分の売上データを活用し、MECEな形で分解作業を行うことで、現状の売上改善余地がある領域を根拠をもって説明できるようになります。 改善策はどう決定? 最終的に、関係者の合意を得た上で、特定した改善領域に対するアクションプランを立案し、提案することが求められます。

データ・アナリティクス入門

業界事例で実感!仮説検証術

どうして分解が有効? 様々な要素に分解して仮説を組み立て、データを意識した点はとても良いと思います。具体的な業界事例に当てはめて考えることで、理解がさらに深まるでしょう。 具体例はどう映る? 仮説を立てる際には、具体的な業界やビジネスシーンの例を考えると、思考がより深まります。また、データを検証する際にどのようなツールや手法を用いると効果的かを検討することも大切です。 実践で活かすには? 実際のビジネス状況で仮説検証をどう活用するかを考え、具体的に練習することが求められます。引き続き、さまざまな角度から課題を検討してみましょう。 なぜ幅広い視野? 課題は狭い視野だけでなく、幅広い角度で網羅的に考える必要があります。そうしないと、本当の課題を見落としてしまう恐れがあるため、どのようなデータで検証できるかもしっかりと検討することが重要です。 共有はどう役立つ? 自分の考えに固執せず、要素の重要性を周囲と共有しながら多角的に検討していくことが必要です。そして、どのように検証すべきか、またどの項目を指標として設定すべきかを同時に整理していくことが求められていると感じました。

データ・アナリティクス入門

課題解決を導く仮説思考の力

仮説構築フレームワークの活用法は? 仮説構築のフレームワーク(3Cや4P)を課題解決に活用し、実際に使うことで自分の思考のクセを理解しました。このフレームワークは何度も活用して定着させることが大切だと感じました。また、手元にデータがあるとすぐに分析を始めるのではなく、まず複数の仮説を立ててからデータを用いて検証する順番を強く意識する必要があると学びました。これは、私がデータがあるとすぐに分析に取り掛かるクセがあるためです。 依頼元とのコミュニケーションの重要性 各事業の依頼に対しては、目の前のデータだけで解決するのではなく、本質的な課題を見極めるために依頼元とコミュニケーションをとりながら仮説を立てていくことの重要性を感じました。今回学んだフレームワークを活用し、事業ごとに複数のフレームワークを使い分けながら仮説を広げていくつもりです。 伴走案件への仮説思考の応用法は? 来週から複数の伴走案件が始まる予定なので、課題に対して広い視野を持ちながら仮説の幅を広げていきます。多くの案件を同時に進行する中で、関心や問題意識を向上させると共に、課題の深掘りに差が出ないよう、仮説思考を実践していきたいと思います。

アカウンティング入門

カフェで体感!PL構造の魅力

カフェで何を学んだ? 先日の授業では、別の事例紹介に続いて、カフェを例にとってPL構造の復習を行いました。 数字で何が見える? PLを理解する上で、大きな数値をもとに全体概要を把握し、各項目を比較することが重要であると実感しました。また、事業が提供する価値と照らし合わせる視点も非常に印象的でした。 シンプルな構造は? カフェという事例は、売上、原価、販管費といった要素がわかりやすく、単店舗飲食業というシンプルなビジネスモデルであるため、提供価値の違いによるPL構造の変化が理解しやすかったです。 今後の取り組みは? 今後は、以下の点に注力したいと考えています。 ① 今期の予実分析時にPL構造を再確認する。 ② 担当事業のPLについて、提供価値との整合性を再検証する。 ③ 現業界内での競合企業や、将来のターゲット市場の企業を複数社分析し、比較対照する。 業界特性はどう? また、業界ごとにPLの構造特性がある中で、業界全体の傾向から大きく逸脱する例が存在するのか、さらに提供価値とコストのバランスを評価するための普遍的なKPIがあるのかについても、今後の検証課題として気になりました。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

データ・アナリティクス入門

仮説の力で未来を切り拓く

仮説の役割は? 仮説とは、ある論点に対する仮の答えであり、目的に応じて「結論の仮説」と「問題解決の仮説」に分類されます。これらは、過去、現在、未来という時間軸によってその内容が変化するため、状況に応じた検討が求められます。仮説を持つことで、個々の仕事における検証能力が高まり、説得力が増すとともにビジネスのスピードや行動の精度も向上します。 会員減少の理由は? たとえば、コミュニティの会員数が減少傾向にある現象について検討する際、フレームワークに沿った分析を行うことで、何が問題なのか、どこに課題があるのか、なぜその問題が生じているのか、さらにはどのように対応すべきかといった具体的な課題が明確になり、改善策も見えてくる可能性があります。このような一連のプロセスは、非常に難しい課題ですが、正確な状況把握と議論の進展に寄与します。 活用法はどう変わる? これまで、仮説を立て検証する際に、フレームワークを十分に活用せず、目の前の事象に対して漠然と対処していた部分がありました。今後は、4Pや3Cなどのフレームワークを効果的に用い、より具体的な仮説を立て検証することが求められると感じています。

データ・アナリティクス入門

論理と実践で描く解決ストーリー

数値に隠れた真実は? 本単科で学んだ内容を振り返り、まず、データ分析は単なる数値の羅列ではなく、比較対象を明確にした上で、数値に裏付けられた論理的な問題解決の道筋を描くことが大切であると再認識しました。 問題解決の流れは? また、問題解決にあたっては、思いつきの分析ではなく、問題解決の4ステップを明確にし、解決までのストーリーをしっかりと立てて実行する必要性を学びました。健康経営推進でのKGIやKPIの設定、戦略の見直し、効果的な施策の検討、さらには働きやすさや働きがいの醸成に向けた取り組みとして、男性の育休取得率と女性活躍の相関関係の検証、介護と仕事の両立支援に関する現状把握と課題の抽出、効果検証といった事例を通して、その具体的なアプローチ方法が示されました。 効果的なスキル向上は? 加えて、Excelを用いた関数活用やグラフ作成のスキル向上、可視化資料を活かした説得力のあるプレゼンテーションの訓練が、実践的な分析や提案活動に直結する点も印象的でした。自分が出した解決案を俯瞰的に確認し、他者の意見を取り入れてブラッシュアップすることで、より実効性のある提案が実現できると感じました。

「課題 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right