データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

クリティカルシンキング入門

データ分析で得る新たな視点と知見

分解の効果は何? データを分解することで、より多くの知見を得られることを実感しました。特に、ある特徴が一つの切り口で現れた際に、それだけで答えを決めつけると他の観点から見ると誤りであることがあることに新鮮さを覚えました。答えが見つかったように見えても、それはあくまで仮説であり、しっかりと検証することが重要だと感じました。 現状をどう把握する? ITシステム品質保証チームの今後の戦略を立てるにあたり、まず現状を把握したいと思います。そのために、システムの品質評価を分解し、現状に対する課題を見つけ、知見を得たいと考えています。具体的には、ユーザーが5段階で評価したデータの平均値であるNPS平均を分解していきます。 どの切り口が有効? まず、MECEを意識しながら様々な切り口を考えます。層別分解としては、ユーザーの属性別や単価別を検討します。変数分解としては、評価の平均は合計値を評価数で割ることで得られるため、5段階各評価ごとの合計をグラフ化します。また、評価数の分布や1ユーザーあたりの評価回数の層を作り、さらに分解して考察します。プロセス分解としては、ユーザーが新規登録してからサービスを利用し終えるまでの流れをプロセスに分けて、各段階での評価がどの程度であるかを分析していきます。 検証の重要性は? 以上のように、さまざまな観点から分解することで知見を得ることを目指します。

クリティカルシンキング入門

分解思考で拓くビジネス洞察

どう分析すべき? データの分け方に工夫を凝らすことで、その背景にあるビジネス状況をより的確に表現できることを学びました。単に漫然と分析するのではなく、まずはビジネス自体を深く理解し、その特性を把握した上で適切な仮説を立てるアプローチが重要だと感じました。 プロセスは必要? また、これまで「MECE=層別分解・変数分解」という理解でありましたが、今回、プロセス分解の視点にも改めて注目することになりました。問題が生じる「場所」を特定する際、この新たな視点が非常に有効だと実感しています。 保険契約の見方は? グループ会社の保険契約状況の見える化においては、同一保険の加入状況を売上金額、保険料、人員数、事業セグメントといった切り口で層別分解し、また対象資産と保険料率による変数分解を行うことが考えられます。同様に、業務効率化を図る際も、まずは業務プロセス自体を検証し、プロセス分解を通じて効率向上の余地がある部分を明確にすることが求められると感じました。 全体はどう見える? 今後は、入手した対象データに対して様々な切り口での見える化を実施し、そこから読み解かれる課題や方向性を対話を通して共通認識にまとめ、実際の行動に結びつけていきたいと考えています。場当たり的な改善ではなく、全体プロセスをMECEの視点で分解して俯瞰的に分析することで、より効果的な取り組みを優先的に進めていく所存です。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

アカウンティング入門

損益計算書が語るビジネス秘訣

損益計算書で何が分かる? 損益計算書を確認することで、同じ業種内でもターゲットやコンセプトが異なると、かかる費用や得られる利益に違いが生じることを実感できました。規模が異なれば、たとえ利益率が同じでも利益額に差が出るため、最初のコンセプト設計やマーケティングをしっかり行い、ビジネスモデルをしっかり組み上げる必要があると感じました。初期費用が大きいビジネスは、成功すれば大きなメリットが期待できる一方で、リスクも高いという点も理解できました。 重要な意識ポイントは? 具体的には、以下の点を意識しています。 ① 安定しているビジネスでも、どこから利益が生み出され、経費が適切なのかを検証すること。変動要素をしっかり確認できるようになりたい。 ② 現状を踏まえて次期の事業を検討し、アドバイザーと対等に話ができるようにすること。 ③ これまでの損益計算書をもう一度見直し、無駄なコストと利益がどこから生まれたのかを考え直すこと。 ビジネス課題は? 例題では、利益率が予想より低く、それでビジネスが成り立つのか、またリスクが大きいのではないかと感じる部分がありました。自分のビジネスは派手さこそないものの安定しているため、経営に対する視点が大雑把になりがちな点が課題だと感じます。さまざまなビジネスの事例を参考に、経費・利益・リスクについてどのように考えるべきかを今後検討していきたいです。

データ・アナリティクス入門

経営者気分で学ぶ仮説解決術

データと仮説でどう考える? これまでの総復習を通して、まずデータを用いて問題の所在を読み解き、原因を仮説思考で考察し、その上で対策を検討するフレームワークを再確認できました。どんな状況においても、ロジカルに物事をとらえ、データを基に仮説を立てることで問題解決の道筋を描く大切さを強く実感しました。 なぜ一貫性が感じられる? また、ストーリー全体に一貫性があり、学びの流れが頭にしっかりと残りました。経営者になった気分で対策を検討できたことも、非常に印象に残っています。 マーケ実践はどう進む? マーケティングの分野では、日頃の活動にデータドリブンな視点を取り入れることで、施策の有効性の比較、優先順位の設定、費用対効果や効果の見通しなど、具体的な対策を実行に移す自信が持てました。施策の判断軸となる評価項目や様式を統一することで、正しい比較ができる点も大変有用だと感じました。 病院DXで何を改善? 一方で、病院のDX推進においては、導入率のトラッキングや向上施策、トレーニングの立案など、データに基づいた仮説と検証を繰り返す取り組みが今後の課題となると同時に、実践的な対策として役立つと考えています。目的を明確にし、過不足なくデータを収集、複数のメンバーと多角的な視点で仮説をたて検証することで、事前に設定した評価項目を使いながら、効果を正確に測る仕組みを構築する重要性を再認識しました。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

戦略思考入門

視点改革で未来を創る

他者の視点はどう活かす? ビジネスシーンにおいて、経営者、顧客、他者の目線という異なる視点を意識しながら物事を俯瞰することの重要性を改めて実感しました。こうしたフレームワークの習慣が、組織全体に議論のレベルアップを促すカルチャーの醸成につながると感じます。 新ビジネスの進め方は? また、新規ビジネスを推進する際には、次の3点が鍵となると思います。まず、全社横断で活動するために、他部門にとってのメリットを意識すること。次に、ブレインストーミングなどで出た他者の意見を一旦アクションプランに盛り込み、どの段階で実行に移すかを仮の予定として組み込むこと。そして、PDCAサイクルの「C」(改善)の段階で、当初計画とのギャップに着目し、フレームワークを用いて課題の仮検証を行うことです。 強みの捉え方はどう? 自社の強みをどのように定義するかという点については、マネージャークラスの起案者はどうしても主観が入りやすく、やや過大評価になる傾向があると感じています。一方で、現場の担当者は自社の強みに対し、より厳しい評価を下すことが多い印象です。 データ評価のポイントは? さらに、フレームワークによる分析を行う際には、自社評価の前提条件に対するバイアスを可能な限り排除するため、市場シェアや自社財務などの幅広い公表データを十分に活用する必要があるのか、と疑問を抱かざるを得ません。

デザイン思考入門

発想の種が未来を創る

どんなアイデアが光る? ライブ授業の録画で皆さまのプロトタイプを拝見し、多くの気づきと刺激を受けました。たとえば、バッグ自体ではなくその中に入れる荷物の軽量化という発想や、ロボットやドローンによる荷物運搬という発想には、驚きとワクワクを感じました。 学びをどう実践する? 課題解決型学習プログラムの取り組みの中で学んだ〝デザイン思考〟を実践していきたいと思います。先日、付属高校の探究授業の成果発表会に招待されましたが、あまり斬新とは言えない内容が多いように感じました。後に、大学の経営学の教員が事前にビジネスフレームワークの基礎をレクチャーしていたと知り、アイデア部分が十分に発展していなかったのではないかと考えました。若者本来の自由な発想を引き出すファシリテーションの重要性を改めて実感し、今回の学びから貴重な知見を得ることができたと思います。 隠れたニーズは何だろう? 共感や課題定義においては、顕在ニーズはすでに解決されている可能性があるため、誰も気づいていない潜在ニーズの発見に力を注ぎたいと考えています。また、発想に関しては「量が質を担保する」という考えを念頭に、さまざまなアイデアを積極的に出す環境づくりが重要だと感じました。さらに、プロトタイプ検証は一度経験してからが本当のスタートであるという先生の言葉は、学生たちにもぜひ伝えていきたいと思います。

クリティカルシンキング入門

数字で拓く!問いの提案術

グラフで何が見える? まず、データ分析においてグラフ化の重要性を再認識しました。グラフにより数値を視覚的に捉えることで、抜け漏れがないかや新たな切り口で分解すべき点に気づくことができます。 仮説をどう活かす? また、仮説を立てた上で分析する手法の意義も感じました。意味のあるデータの切り分けが可能になり、仮説検証のサイクルを回すことで、より納得感のある結論に近づけると実感しています。 問い続ける理由は? さらに、常に問い続ける姿勢が大切であることも学びました。初めに思いついた主張や根拠、データの特徴に飛びつく傾向があったため、十分な納得感を得られなかった経験を踏まえ、問い直すことで提案の精度を高める重要性を認識しました。 IT戦略はどう選ぶ? 今回の学びは、IT戦略においてどの領域へ投資するかを見極めるアプローチに活かせると考えています。企業の意思決定者に対して誰もが納得する提案を行うため、数字を加工・分解して的確に課題を捉えるとともに、問い続けるプロセスで自分の案を磨いていくことが必要だと思いました。 説得力はどう磨く? 実務においても、この学びを実践し習慣化することで、より説得力のある提案を行っていきたいと考えています。加えて、数字を切り分ける際の観点や、MECEなどの枠組みについて、皆さんの意識している切り口を教えていただければ幸いです。

「課題 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right