データ・アナリティクス入門

課題の核心に迫るMECE思考

原因を見極めるには? 問題の原因を分析する際には、まずプロセスごとに分解し、どこに問題が存在するのかをMECEの視点で明確に特定していく作業が重要だと学びました。このアプローチにより、原因分析なしにどのように解決策にたどり着くかが分からなくなる事態を回避できます。また、特定した原因が実際に問題の根本的な要因であるかどうかを検証するために、他の条件を極力同一に保った上で、原因がある場合とない場合の結果の違いを確認することが必要です。 なぜ原因を掘り下げる? 監査の現場において、課題を発見した際に「何が、どこで問題なのか」という点(WHAT・WHERE)だけを把握して満足してしまい、なぜその問題が生じたのか(WHY)まで掘り下げられず、結果として効果的な改善提案(HOW)がなされない場合があることを実感しました。今後は、プロセスに沿った課題の特定と原因分析により意識を集中させる必要があると感じています。 仮説検証をどう進める? 今後は、課題の特定及び原因分析の際に、MECEの視点をしっかりと意識し、問題の発生箇所と原因を的確に絞り込んでいきたいです。その際、立てた仮説を決め打ちにせず、データ分析を活用して客観的に検証することを心がけ、より精度の高い改善提案を実現していきたいと思います。

クリティカルシンキング入門

イシューを極める学びの旅

どのイシューに注目? 今回の学びで、フォーカスすべきイシューを正しく把握する重要性を再認識することができました。どのイシューに注力すべきか、そしてそのために何から取り組むべきかを明確にしなければ、成果に大きな差が生まれるという点は、今後の活動において大変参考になります。特に、ある有名ファーストフードチェーンの事例は、イシューの捉え方を考える上で非常に示唆に富んでいました。 エリアプランはどう整理? また、四半期、半期、年間のエリアプラン作成においても、この考え方は大いに役立つと感じています。エリアの現状や課題を正しく把握し、優先順位をつけること、さらには複数の解決策のオプションを検討することが重要です。顧客の反応を継続的に分析して、アクションプランを再構築し、必要に応じて追加検討を行う際にも、この学びは非常に活用できると考えています。 市場を多角的に見る? さらに、様々な角度から市場を分析することで、ターゲットとするイシューをより正確に把握する努力を続けたいと思います。仮説を立て、その検証結果をもとに改善を重ねるプロセスを通して、本当に必要な知識を身につけることが目標です。また、チーム内で得た知見を共有し、議論することで、さらに理解を深めることができると確信しています。

クリティカルシンキング入門

仮説検証で広がる学び

イシューはどう特定? イシューの特定は容易ではなく、常に分解を行わなければ混乱に陥りやすいと感じています。常に「イシューとは何か」を意識し、その切り口となる仮説を用意しつつ、多角的に検証する必要があります。実際、以前は思い込みで打ち手を考えていたときに比べ、約30倍もの時間を必要とすることを実感しました。 打ち手は何が有効? クライアントの現状に対し、どの打ち手が有効かを検討する際、これまで見慣れたSNSや特定のプラットフォームだけに頼るのではなく、リアルな情報も加味しながら、あらゆる角度からイシューを特定する重要性を改めて認識しました。 仮説の検証はどう? イシュー特定のためには、直感に頼らず、常に仮説を立てた上でデータを分析することが欠かせません。仮説の検証が十分に進まない場合は、別の仮説を設定し、さまざまな視点から考察する習慣を身につけることが大切だと感じています。 構造再考はどうすか? 自身の業務に照らし合わせると、クライアントの課題特定についてはまだ不十分だと感じました。ピラミッドストラクチャーを用いた際に根拠が不安定になる場合は、根拠を補足するための情報を集める必要があるか、もしくは一度構造を解体して再考する選択肢も考えるべきだと思います。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

データ・アナリティクス入門

論理で拓く未来への一歩

現在の状況はどう評価? 問題解決には、まず最初に現在の状況と理想とのギャップ、つまり「あるべき姿」と「現状」の差を明確にすることが必要です。このギャップは、分析の際に数値化することで、問題の規模や深刻度が具体的に把握できます。 問題発生の場所は? 次に、問題が具体的にどこで発生しているのかを検証します。問題を細かい要素に分け、見なくてもよい部分を除外することで、焦点を絞りやすくなります。 原因は何だろう? その後、なぜ問題が発生しているのか、その根本原因を徹底的に分析します。そして、最後のステップとして、どのように解決策を実行していくかを具体的に考えます。ここでは、ロジックツリーやMECEの考え方を活用することで、多角的な視点から検討し、説得力のある解決策をまとめることができます。 解決策はどこから? この問題解決の手法は、売上の予算と実績の差異を説明し、対策を検討する際に非常に有効です。問題解決のステップを意識することで、効率よく課題に取り組むことができると感じています。また、これまであまり活用してこなかったロジックツリーやMECEの手法も、論理的な考え方を鍛えるために必要であり、簡単な分析にも応用することで、次第に使いこなせるようになりたいと思います。

データ・アナリティクス入門

比較で照らす課題と新発見

問題はどこに? 分析においては、比較の重要性を学びました。具体的には、問題箇所をプロセスごとに分解し、その中でどこが課題となっているのかを明確にする方法です。業務内容によっては、顧客数や単価、さらには年齢層や競合の視点なども考慮する必要があります。これまでは感覚的に分析していたため、今後はストーリー性を持たせた見通しの立て方が有効だと感じています。 利用動向はどう? たとえば、コロナ前後でサービス利用が減少しているという現状について、一人当たりの利用量が下がっているだけでなく、利用者全体の数や競合の動向も踏まえて比較検討することで、新たな発見が得られる可能性があります。各要素を分解して分析することで、より明確な課題の特定が進むと考えています。 データはどう整理? そのため、まずは現在あるデータをプロセスごとに整理し、「サービス料」と「サービス利用者数」の比較からアプローチを始めます。仮説としては、サービス料に何らかの課題が存在するはずなので、一人あたりのサービス料、最大値と最小値、中央値といった指標を調査し、問題がどこにあるのかを絞り込んでいきたいと思います。さらに、競合するサービスの状況も合わせて検証することで、より具体的な分析が可能になると考えています。

戦略思考入門

仮説で切り開くDX推進の道

情報はどう補う? 総合演習を通じて感じたことは、設問の情報だけでは答えられない問題がいくつかあり、不足している情報を取得する必要があるということです。それでも情報が不足する場合があり、その際はある程度仮説を立てて物事を考える必要があります。この点は今回の事例に限らず、実際の業務でも同様だと思いました。100%の情報が揃うことはまずなく、不足する情報は自分で調査をし、または人から聞いて知識を埋めなければならないと感じました。それでもなお未知の部分は、仮説を立てて結論を導き出す力が求められます。 新部署で挑戦する? 10月からDX推進部に異動しました。ここでは、従来の定型業務がなく、正解のない課題に取り組む必要があります。新しいプロジェクトの一つひとつにおいて、今回の学びを活かせると確信しています。特に、フレームワークを活用した現状の整理や仮説思考が重要です。 e-learningで学ぶ? まずは、ある程度答えがある事柄、つまり前提知識については、会社のe-learningを活用して知識を深めたいと思います。そして、新しいことの効果を検証する際には必ず仮説思考が必要であり、100点満点ではないにせよ、今ある情報をもとに効果を試算することに挑戦していきたいです。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

戦略思考入門

実践で磨く戦略差別化の秘訣

ターゲットはどう選ぶ? これまで、差別化を考える際に自社の強みを基準にして戦略を立ててきましたが、まずはターゲットとするクライアントを明確に定めることの重要性に気づきました。さらに、ターゲットの視点から自社が通常競合と捉える企業だけでなく、業界を問わず強豪が存在するか、その強豪と比較して優位に立てるか、また模倣されにくい施策であるかを検討する必要があると学びました。 部署の戦略はどう見直す? 会社全体では差別化できる部分があるものの、所属する部署においてはその点が十分に発揮できていないと感じています。上司が自部署の戦略を考える中で差別化案を提示しているため、これまで自分の意見を積極的に述べる機会が少なかった状況でした。そこで、自らフレームワークに沿って部署を分析し、自身の視点での差別化戦略を模索するとともに、上司の戦略も同じくフレームワークを用いて検証していくつもりです。 現状の課題は何か? 担当部署には多くの競合が存在し、自社全体の強みと比べると、部署内の強みは薄いという現状を改めて認識しました。今後は、自部署の現状を十分に分析した上で、取るべき方向性を明確にし、差別化できるポイントや今後伸ばすべき点について上司と議論していきたいと考えています。

データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

データ・アナリティクス入門

データをビジュアル化して誤認を防ぐ方法とは

前提を間違えずに検証するには? 平均年齢30才という言葉から、勝手に30才前後が多いと解釈してしまいました。仮説を立てて検証する際にも、前提を間違えると意味がないことを実感しました。データをビジュアル化することで、事実を正しく把握しやすくなり、様々な視点を得られることが体感できました。この誤認しやすい傾向を忘れず、丁寧に事実を把握することを意識したいと思います。自分の単純に判断しやすい癖を改めて感じました。 予測はどのように立てるべき? グラフを作成する前に予測を立ててみることも重要です。事前に予測することで、想定と現実とのギャップを見つけやすくなり、課題箇所を把握しやすくなります。また、作業手順に意識を向け、グラフ作成時には特徴的な箇所を意識することも大事です。今まであまり意識してこなかった手順を意識し、ステップを可視化して実施することに努めたいと思います。 ビジュアル化がもたらす効果は? 仮説検証は、正確な事実把握ができて初めて成り立つため、まずは身近な課題や過去の課題から事実把握のビジュアル化を実践し、確認していくことが大切です。正しい事実把握の習慣化を努め、課題を把握しやすいデータ加工とビジュアル化を念頭に作業を意識的に進めていきます。

クリティカルシンキング入門

データが示す問題解決のヒント

データの切り分けは? データから課題を抽出し、論点を明確にする構造的思考力の重要性を改めて認識しました。これまでの可視化されたデータ作成方法を復習しながら、「問題→要因分析→解決策提案」という一連の流れが実践的であると実感しました。特に、データの分類軸の切り方によって見えてくる内容が大きく変わる点は、今後の業務において有効に活用していきたいと考えています。 担当業務の見直しは? 私の担当する業務は、直接的に顧客データや売上データを扱うものではなく、事業やプログラムの実施および運営が中心です。現在、開始から3年目を迎えるプログラムのさらなる拡充を目指し、これまでの参加者の所属先、部門、所在地、業種などの特徴や、分野別の分析、そして他の類似プログラムとの比較など、さまざまな視点からの検証を進めたいと思います。 改善方法はどうする? また、自身が携わるプログラムの進捗や課題について、これまで限られた範囲で数値化するに留まっていましたが、今後は問題点を明確にし、MECEを意識した分類とグラフ化によって、限られたスペースにより多くの情報を効率的に伝えられる方法を再検討する所存です。作業中に方針がブレないよう、常に意識を高く保ちながら取り組んでいきます。

「課題 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right